算法简介
二分查找(Binary Search),是一种在有序数组中查找某一特定元素的查找算法。查找过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则查找过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组为空,则代表找不到。
这种查找算法每一次比较都使查找范围缩小一半。
算法描述
给予一个包含 n个带值元素的数组A
1、 令 L为0 , R为 n-1 ;
2、 如果L>R,则搜索以失败告终 ;
3、 令 m (中间值元素)为 ⌊(L+R)/2⌋;
4、 如果 Am<T,令 L为 m + 1 并回到步骤二 ;
5、 如果 Am>T,令 R为 m - 1 并回到步骤二;
复杂度分析
时间复杂度:折半搜索每次把搜索区域减少一半,时间复杂度为 O(logn)
空间复杂度:O(1)
算法实现
#include<iostream>
using namespace std;
int binary_search(int nums[], int begin, int end, int val){
if(begin>=end) return -1;
int mid=(begin+end)/2;
cout<<"debug: mid="<<mid<<endl;
if(val==nums[mid])
return mid;
else if(val<nums[mid])
return binary_search(nums, begin,mid,val);
else
return binary_search(nums,mid+1, end,val);
}
int main(){
int nums[]={12,23,34,45,56,67,78,89,90};
int val, local, len=sizeof(nums)/sizeof(nums[0]);
cin>>val;
local=binary_search(nums,0,len,val);
if(local>=0)
cout<<val<<" is at: "<<local<<endl;
else
cout<<val<<" is not in nums."<<endl;
}