《机器学习实战》学习笔记三:决策树

本文介绍了决策树的学习笔记,重点关注信息增益和香农熵的概念。详细讲解了如何计算香农熵,如何根据特征划分数据集,选择最佳划分方式,以及如何构建决策树并进行分类。此外,还讨论了在类别标签不唯一时如何处理。
摘要由CSDN通过智能技术生成

1.信息增益
决策树应该是比较简单的概念了,其结构类似于二叉树,从根节点向下依次判断,直至叶子节点获得结果。对于基本结构不多说了,这里主要说一下和决策树相关的两个数学上的概念,即信息增益和香农熵。信息增益是指的以某一个特征对数据集划分前后数据集发生的变化,而香农熵则是度量这一变化的量。
香农熵的计算公式如下:
这里写图片描述

计算香农熵的代码:

def calcShannonEnt(dataSet): #计算香农熵
    numEntries = len(dataSet)
    labelCounts = {}
    for featVec in dataSet:
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys():#返回所有键值
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1 #统计该类别出现的次数
        shannonEnt = 0.0
        for key in labelCounts:
            prob = float(labelCounts[key])/numEntries
            shannonEnt -= prob * log(prob,2)
        return shannonEnt

以上代码比较简单,在数据集中数据是以[1,1,’yes’]这样的形式存放的,最后一个元素即为标签,以此为基础,建立一个空字典统计各个标签出现的次数,以每个标签出现的次数做分子来计算标签出现的概率,计算香农熵。

2.划分数据集
这一步我们需要两个函数,一个是按照给定的特征划分数据集,另一个是选择如何选择划分效果最好的特征。
按照给定的特征划分数据集代码:

def splitDataSet(dataSet,axis,value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis]==value:
            reducedFeatVec = featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

以上代码使用了三个参数,带划分的数据集、给定的特征、需要返回的特征的值。这里首先建立一个空列表用来存储返回的数据集合,然后遍历数据集,找到数据集中符合给定特征要求的值的元素,将其抽出来并添加到新的列表中。
在这里要注意的是extend()和append()两种方法看起来相似,其实大有不同,在处理列表和单个元素时两者功能一样,但是当处理两个列表时就不同了,append()是将第二个元素以列表的形式加入到第一个列表中的,比如a=[1,2,3],b=[4,5,6], a.extend(b) 的结果是[1,2,3,4,5,6],a.append(b)的结果是[1,2,3,[4,5,6]]是直接将列表b整个作为第4个元素加入到列表a的。

选择最好的划分方式的代码如下:

def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0])-1 #数据集的长度
    baseEntropy = calcShannonEnt(dataSet)  #初始数据集的熵
    bestInfoGain = 0.0                     #初始化最优信息增益
    bestFeature = -1                      #最优特征的位置
    for i in range (numFeatures):       #遍历特征集
        featList = [example[i]for example in dataSet]  #各元素中特征i的特征值的集合
        uniqueVals= set(featList)    #建立一个无序不重复的特征值的集合
        newEntropy= 0.0
        for value in uniqueVals:                       #遍历特征值集
            subDataSet = splitDataSet(dataSet,i,value)  #划分后的子集
            prob = len(subDataSet)/float(len(dataSet))  #划分后子集的概率
            newEntropy+=prob*calcShannonEnt(subDataSet) #香农熵
        InfoGain = baseEntropy - newEntropy             #计算信息增益
        if(InfoGain>bestInfoGain):                      #判断是否为最优信息增益
            bestInfoGain = InfoGain
            bestFeature = i
    return  bestFeature                                #返回最优特征

这一部分代码主要是一个两层循环,外层是数据集中特征的遍历,内层是每一个特征对应特征值集合的遍历,用以上两个值对数据集进行划分,并得到一个划分后的子集,计算子集的香农熵,进而计算信息增益,并与最优信息增益比较,最后返回最优信息增益。

3.决策树的构建
对于以上划分数据集的方法,有可能存在类标签不唯一的情况,在这时我就需要通过多数表决的方式来确定叶子结点的分类,这一部分代码如下:

def majorityCht(classList):
    classCount={}  #建立一个空字典
    for vote in classList:
        if vote not in classCount.keys():classCount[vote]=0
        classCount[vote]+=1
    sortedclassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True) #对字典的key进行排序
    return sortedclassCount[0][0]

下面是创建决策树的代码:

def createTree(dataSet,labels):
    classList = [example[-1] for example in dataSet]  #特征的集合
    if classList.count(classList[0])==len(classList): #count()统计某个字符出现的次数
        return classList[0]                          #如果特征都相同,则返回该特征
    if len(dataSet[0])==1:                            #如果特征不唯一,则返回多数的特征
        return majorityCht(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)      #选择最优特征
    bestFeatLabel =labels[bestFeat]
    myTree = {bestFeatLabel:{}}                     #生成树的根节点
    del(labels[bestFeat])                           #删除已经生成节点的特征
    featValues = [example[bestFeat]for example in dataSet]  #获取最优类特征的值
    uniqueVals = set(featValues)                      #无序不重复集合
    for value in uniqueVals:                          #遍历特征,继续创建决策树
        subLabels = labels[:]
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet,bestFeat,value),subLabels)
    return myTree

4.使用决策树进行分类
代码如下:

def classify(inputTree,featLabels,testVec):
    firstStr = inputTree.keys()[0]   #取第一个特征
    secondDict = inputTree[firstStr] #第一个特征的值的集合
    featIndex = featLabels.index(firstStr)#字符串的索引
    for key in secondDict.keys():#遍历集合
        if testVec[featIndex] ==key:
            if type(secondDict[key]).__name__=='dict':#判断是否为字典类型
                classLabel = classify(secondDict[key],featLabels,testVec)#以此特征为根节点继续查找
            else: classLabel = secondDict[key]#若不是字典类型则将其视为类标签
        return classLabel

决策树的存储:

def storeTree(inputTree,filename):
    import pickle
    fw = open(filename,'wb')#python 3中需要以二进制形式打开
    pickle.dump(inputTree,fw)
    fw.close()
def grabTree(filename):
    import pickle
    fr = open(filename,'rb')#python 3 同上
    return pickle.load(fr)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值