Scala语言与spark常用函数使用说明

目录

1.Scala函数方法

1.1Map()方法

1.2foreach()方法

1.3filter()方法

1.4flatten()方法

1.5flatmap()方法

1.6.groupBy()方法

2.spark编程基础

2.1parallelize()

2.2makeRDD()

2.3textfile()

2.4Map()方法

2.5sortBy()方法

2.6collect()方法

2.7flatMap()

2.8take()方法

2.9union()方法

3.0distinst()方法

3.1cartesian() 方法

3.2reduceByKey()

3.3groupBykey()

3.4combineByKey() 

3.5join()方法


1.Scala函数方法

1.1Map()方法

map()是一种高阶函数,通常用于对集合(比如List、Array等)中的每个元素进行映射转换。它接受一个函数作为参数,该函数会被应用到集合中的每个元素上,并返回一个新的集合,其中包含了原集合中每个元素经过函数转换后的结果

代码:

object one {
  def main(args: Array[String]): Unit = {
    // 定义一个列表
    val a = List(1, 2, 3, 4, 5)

    // 使用map()函数将列表中的每个元素乘以2
    val b = a.map(x => x * 2)

    // 打印转换后的列表
    println(b)
  }
}

结果:

1.2foreach()方法

foreach() 是 Scala 中常用的集合操作方法之一,用于对集合中的每个元素执行指定的操作,但不返回任何结果。与 map() 不同的是,foreach() 主要用于执行副作用操作,而不是对集合中的元素进行转换

代码:

object one {
  def main(args: Array[String]): Unit = {
    // 定义一个列表
    val numbers = List(1, 2, 3, 4, 5)

    // 使用 foreach() 方法打印列表中的每个元素
    numbers.foreach(x => println(x))
  }
}

结果:

1.3filter()方法

filter() 方法是 Scala 中常用的集合操作方法之一,用于筛选出集合中满足指定条件的元素,并返回一个新的集合包含满足条件的元素。这个方法接受一个函数作为参数,该函数会被应用到集合中的每个元素上,如果函数返回 true,则该元素会被包含在结果集合中,否则不包含。

代码:

object one {
  def main(args: Array[String]): Unit = {
    // 定义一个列表
    val numbers = List(1, 2, 3, 4, 5)

    // 使用 filter() 方法筛选出列表中大于 2 的元素
    val filteredNumbers = numbers.filter(x => x > 2)

    // 打印筛选后的列表
    println(filteredNumbers)

  }
}

结果:

1.4flatten()方法

flatten() 方法在 Scala 中用于将嵌套的集合结构“扁平化”,即将多层嵌套的集合转换为单层的集合。例如,如果你有一个包含多个列表的列表,你可以使用 flatten() 方法将其转换为一个单独的列表,其中包含了所有元素:

代码 :

object one {
  def main(args: Array[String]): Unit = {
    val nestedList = List(List(1, 2), List(3, 4), List(5, 6))
    val flatList = nestedList.flatten

    println(flatList)
  }
}

结果:

1.5flatmap()方法

flatMap() 方法是一种结合了 map()flatten() 的功能的高阶函数。它通常用于在集合上应用一个函数,并将结果扁平化成一个单层的集合。

具体来说,flatMap() 方法首先对集合中的每个元素应用一个函数,然后将结果集合中的每个子集合合并成一个大的集合。

代码:

object one {
  def main(args: Array[String]): Unit = {
    val list = List(List(1, 2), List(3, 4), List(5, 6))

    // 使用 flatMap() 方法将嵌套的列表转换为单层列表
    val flatMappedList = list.flatMap(x => x)

    println(flatMappedList)
  }
}

结果:

1.6.groupBy()方法

groupBy() 方法用于根据给定函数对集合中的元素进行分组,并返回一个 Map,其中键是分组的结果,而值是相应分组的元素列表。

代码:

object one {
  def main(args: Array[String]): Unit = {
    val list = List("apple", "banana", "grape", "apricot", "blueberry")

    // 使用 groupBy() 方法根据字符串长度进行分组
    val groupedMap = list.groupBy(_.length)

    println(groupedMap)

  }
}

结果:

2.spark编程基础

2.1parallelize()

parallelize() 方法是 Apache Spark 中的一个函数,用于将现有的集合转换为分布式数据集(RDD)。在 Spark 中,RDD(Resilient Distributed Dataset)是一种表示分布在多台计算机上的数据集合的数据结构。通过将数据集分布在多台计算机上,Spark 可以实现并行计算,加速数据处理过程。

代码:

import org.apache.spark.{SparkConf, SparkContext}

object one {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("example").setMaster("local[*]")
    val sc = new SparkContext(conf)
    // 创建一个包含整数的列表
    val data = List(1, 2, 3, 4, 5)

    // 使用 parallelize() 方法将列表转换为 RDD
    val rdd = sc.parallelize(data)

    // 对 RDD 执行一些操作
    val sum = rdd.reduce(_ + _)

    println("Sum of elements in RDD: " + sum)

  }
}

结果:

2.2makeRDD()

makeRDD() 是一个用于创建 RDD(弹性分布式数据集)的方法。它可以将一个已存在的集合或数组转换为一个 RDD,使得数据能够在 Spark 集群上进行并行计算。

代码:

import org.apache.spark.{SparkConf, SparkContext}

object one {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("SparkApp").setMaster("local[*]")
    val sc = new SparkContext(conf)

    // 创建一个包含整数的列表
    val data = List(1, 2, 3, 4, 5)

    // 使用 makeRDD() 方法将列表转换为 RDD
    val rdd = sc.makeRDD(data)

    // 对 RDD 执行一些操作
    val sum = rdd.reduce(_ + _)

    println("Sum of elements in RDD: " + sum)

    sc.stop()
  }
}

结果:

2.3textfile()

textFile() 是一个用于读取文本文件并将其转换为 RDD 的方法。该方法可以接受一个或多个文件路径,并将它们转换为 RDD

代码:

import org.apache.spark.{SparkConf, SparkContext}

object SparkApp {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("SparkApp").setMaster("local[*]")
    val sc = new SparkContext(conf)

    // 使用 textFile() 方法读取文本文件并创建 RDD
    val rdd = sc.textFile("C:\\Users\\Administrator\\Desktop\\a.txt")


    // 对 RDD 执行一些操作
    val count = rdd.count()

    println("Number of lines in RDD: " + count)

    sc.stop()
  }
}

结果:

2.4Map()方法

Spark 中,map() 是一个用于对 RDD 中的每个元素执行转换操作的方法。该方法接受一个适用于 RDD 中每个元素的函数,并返回一个新的 RDD

代码:

import org.apache.spark.{SparkConf, SparkContext}

object SparkApp {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("SparkApp").setMaster("local[*]")
    val sc = new SparkContext(conf)

    // 创建一个包含整数的列表
    val data = List(1, 2, 3, 4, 5)

    // 使用 makeRDD() 方法将列表转换为 RDD
    val rdd = sc.makeRDD(data)

    // 对 RDD 中的每个元素执行平方操作
    val squaredRDD = rdd.map(x => x * x)

    // 输出转换后的 RDD 中的元素
    squaredRDD.foreach(println)

    sc.stop()
  }
}

结果:

2.5sortBy()方法

在 Spark 中,sortBy() 是一个用于对 RDD 中的元素进行排序的方法。该方法接受一个排序函数和一个布尔值参数,用于指定排序方式(升序或降序),并返回一个新的已排序的 RDD。

代码:

import org.apache.spark.{SparkConf, SparkContext}

object SparkApp {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("SparkApp").setMaster("local[*]")
    val sc = new SparkContext(conf)

    // 创建一个包含整数的列表
    val data = List(5, 3, 1, 4, 2)

    // 使用 makeRDD() 方法将列表转换为 RDD
    val rdd = sc.makeRDD(data)

    // 对 RDD 中的元素进行排序
    val sortedRDD = rdd.sortBy(x => x, ascending = true)

    // 输出排序后的 RDD 中的元素
    sortedRDD.foreach(println)

    sc.stop()
  }
}

结果:

2.6collect()方法

在 Spark 中,collect() 是一个用于将 RDD 中的所有元素收集到驱动程序中的方法。该方法会以数组的形式返回 RDD 中的所有元素,并且需要注意的是,如果 RDD 太大无法一次性放入内存中,则可能会导致内存溢出。

代码:

import org.apache.spark.{SparkConf, SparkContext}

object SparkApp {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("SparkApp").setMaster("local[*]")
    val sc = new SparkContext(conf)

    // 创建一个包含整数的列表
    val data = List(1, 2, 3, 4, 5)

    // 使用 makeRDD() 方法将列表转换为 RDD
    val rdd = sc.makeRDD(data)

    // 使用 collect() 方法将 RDD 中的所有元素收集到驱动程序中
    val collected = rdd.collect()

    // 输出收集到的 RDD 元素
    collected.foreach(println)

    sc.stop()
  }
}

结果:

2.7flatMap()

flatMap() 方法是 Spark 中常用的一个转换操作,它可以将一个 RDD 中的每个元素映射成一个或多个新的元素,并将这些元素合并为一个新的 RDD。

代码:

import org.apache.spark.{SparkConf, SparkContext}

object SparkApp {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("SparkApp").setMaster("local[*]")
    val sc = new SparkContext(conf)
    val words = sc.parallelize(Seq("Hello", "world", "this", "is", "Spark"))
    words.foreach(println)
    val chars = words.flatMap(word => word.toCharArray)
    chars.foreach(println)
  }
}

结果:

2.8take()方法

take() 方法用于从集合中获取指定数量的元素,返回一个新的集合。

代码:

package com

object one {
  def main(args: Array[String]): Unit = {
    val list = List(1, 2, 3, 4, 5)

    // 取前3个元素
    val result1 = list.take(3)
    println(result1)

    // 对于空集合,take() 方法返回一个空集合
    val emptyList = List.empty[Int]
    val result2 = emptyList.take(3)
    println(result2)

    // 如果指定的数量大于集合中的元素数量,将返回整个集合
    val result3 = list.take(10)
    println(result3)
  }
}

结果:

2.9union()方法

union() 方法用于将两个集合合并成一个新的集合,去除重复的元素。它是集合类的方法之一,适用于 Set 和 Seq 类型的集合。

代码:

package com

object one {
  def main(args: Array[String]): Unit = {
    val set1 = Set(1, 2, 3)
    val set2 = Set(3, 4, 5)

    val result = set1.union(set2)
    println(result)
  }
}

结果:

3.0distinst()方法

distinct() 方法用于从集合中移除重复的元素,并返回一个包含唯一元素的新集合。这个方法适用于 SeqSet 和 Map 类型的集合。

代码:

package com

object one {
  def main(args: Array[String]): Unit = {
    val list = List(1, 2, 2, 3, 3, 4, 5, 5)

    val uniqueList = list.distinct
    println(uniqueList)
  }
}

结果:

3.1cartesian() 方法

用于计算两个 RDD 的笛卡尔积(Cartesian product)。笛卡尔积是两个集合之间的所有可能的组合,其中一个元素来自第一个集合,另一个元素来自第二个集合。

代码:

package com

import org.apache.spark.{SparkConf, SparkContext}

object one {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("RDDCartesianExample").setMaster("local[*]")
    val sc = new SparkContext(conf)

    // 创建两个RDD
    val rdd1 = sc.parallelize(Seq("A", "B", "C"))
    val rdd2 = sc.parallelize(Seq(1, 2, 3))

    // 计算两个RDD的笛卡尔积
    val cartesianRDD = rdd1.cartesian(rdd2)

    // 打印结果
    cartesianRDD.collect().foreach(println)

    sc.stop()

  }
}

结果:

3.2reduceByKey()

用于将具有相同键的元素进行归约操作。它接收一个函数作为参数,该函数定义了对具有相同键的值进行合并的方式,并返回一个新的 RDD。

代码:

package com

import org.apache.spark.{SparkConf, SparkContext}

object one {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("ReduceByKeyExample").setMaster("local[*]")
    val sc = new SparkContext(conf)

    // 创建一个包含键值对的RDD
    val data = Seq(("a", 1), ("b", 2), ("a", 3), ("b", 4), ("c", 5))
    val rdd = sc.parallelize(data)

    // 对具有相同键的值进行求和
    val result = rdd.reduceByKey(_ + _)

    // 打印结果
    result.collect().foreach(println)

    sc.stop()

  }
}

结果:

3.3groupBykey()

用于将具有相同键的元素进行分组。它接收一个键值对 RDD 作为输入,并返回一个新的 RDD,其中的元素是按键分组的。

代码:

package com

import org.apache.spark.{SparkConf, SparkContext}

object one {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("GroupByKeyExample").setMaster("local[*]")
    val sc = new SparkContext(conf)

    // 创建一个包含键值对的RDD
    val data = Seq(("a", 1), ("b", 2), ("a", 3), ("b", 4), ("c", 5))
    val rdd = sc.parallelize(data)

    // 按键分组
    val groupedRDD = rdd.groupByKey()

    // 打印结果
    groupedRDD.collect().foreach(println)

    sc.stop()

  }
}

结果:

3.4combineByKey() 

用于执行基于键的聚合操作的高级转换函数之一。它提供了一种灵活的方式来对每个键的值进行聚合,而不需要事先进行预先聚合或排序。

代码:

package com

import org.apache.spark.{SparkConf, SparkContext}

object one {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("CombineByKeyExample").setMaster("local[*]")
    val sc = new SparkContext(conf)

    // 创建一个包含键值对的RDD
    val rdd = sc.parallelize(Seq(("apple", 3), ("banana", 5), ("apple", 7), ("banana", 2), ("orange", 1)))

    // 使用combineByKey方法进行基于键的聚合操作
    val aggregatedRDD = rdd.combineByKey(
      createCombiner = (v: Int) => (v, 1), // 初始化值为(v, 1),其中v是值,1表示计数
      mergeValue = (acc: (Int, Int), v: Int) => (acc._1 + v, acc._2 + 1), // 将新值合并到已存在的聚合值中,并更新计数
      mergeCombiners = (acc1: (Int, Int), acc2: (Int, Int)) => (acc1._1 + acc2._1, acc1._2 + acc2._2) // 合并不同分区的聚合值,并更新计数
    )

    // 打印结果
    aggregatedRDD.collect().foreach(println)

    sc.stop()
  }
}

结果:

3.5join()方法

用于将两个 RDD 按照键进行连接操作。它接收另一个键值对 RDD 作为参数,并返回一个新的 RDD,其中的元素是两个原始 RDD 中具有相同键的元素的笛卡尔积。

代码:

package com

import org.apache.spark.{SparkConf, SparkContext}

object one {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("JoinExample").setMaster("local[*]")
    val sc = new SparkContext(conf)

    // 创建两个包含键值对的RDD
    val rdd1 = sc.parallelize(Seq(("a", 1), ("b", 2), ("c", 3)))
    val rdd2 = sc.parallelize(Seq(("a", "apple"), ("b", "banana"), ("c", "cherry")))

    // 使用join方法进行连接操作
    val joinedRDD = rdd1.join(rdd2)

    // 打印结果
    joinedRDD.collect().foreach(println)

    sc.stop()

  }
}

结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值