约瑟夫环问题
题意说明
据说著名犹太历史学家Josephus有过以下的故事:在罗马人占领乔塔帕特后,39 个犹太人与Josephus及他的朋友躲到一个洞中,39个犹太人决定宁愿死也不要被敌人抓到,于是决定了一个自杀方式,41个人排成一个圆圈,由第1个人开始报数,每报数到第3人该人就必须自杀,然后再由下一个重新报数,直到所有人都自杀身亡为止。然而Josephus 和他的朋友并不想遵从。首先从一个人开始,越过k-2个人(因为第一个人已经被越过),并杀掉第k个人。接着,再越过k-1个人,并杀掉第k个人。这个过程沿着圆圈一直进行,直到最终只剩下一个人留下,这个人就可以继续活着。问题是,给定了和,一开始要站在什么地方才能避免被处决。Josephus要他的朋友先假装遵从,他将朋友与自己安排在第16个与第31个位置,于是逃过了这场死亡游戏。(来自百度百科)
要求:输入总人数 n 和报数最大值 m ,输出出圈顺序。
一、暴力模拟
1.数组模拟
#include<iostream>
using namespace std;
bool a[101]; //是否出圈
int main() {
int m, n, t = 0, p = 0, s = 0; //t:出圈个数;p:报数;s:下标;
cin >> n >> m;
while (t < n) {
s++; //下标增加
if (s > n) s = 1; //形成圈
if (!a[s]) p++; //未出圈就报数
if (p == m) { //轮到出圈
a[s] = 1; //出圈
t++; //出圈个数+1
cout << s << " "; //输出出圈编号
p = 0; //报数清零
}
}
return 0;
}
2.数组链表模拟
#include<iostream>
using namespace std;
int ne[101]; //下一个人的下标是几
int main() {
int m, n, p;
cin >> n >> m;
for (int i = 1; i < n; i++)
ne[i] = i + 1; //初始化
ne[n] = 1; //成环
p = n;
for (int i = 1; i <= n; i++) { //出n个人
for (int j = 1; j < m; j++) //报数报到m为止
p = ne[p]; //获取下一个人的下标p
cout << ne[p] << " "; //输出出圈人
ne[p] = ne[ne[p]]; //删除出圈人
}
return 0;
}
3.队列模拟
#include<iostream>
#include<queue>
using namespace std;
queue<int> q;
int main() {
int n, m, i, k = 0;
cin >> n >> m; //总人数n,报数报到m
for (i = 1; i <= n; i++)
q.push(i);
while (q.size() > 1) {
k++; //报数
if (k > m) //报数成环
k = 1;
if (k == m) //报到m
q.pop();
else { //不是m,绕圈
q.push(q.front());
q.pop();
}
}
cout << q.front() << endl;
return 0;
}
二、取模优化
例题:洛谷:P1145 约瑟夫
n 个人站成一圈,从某个人开始数数,每次数到m的人就被杀掉,然后下一个人重新开始数,直到最后只剩一个人。现在有一圈人,k 个好人站在一起,k 个坏人站在一起。从第一个好人开始数数。你要确定一个最小的 m,使得在第一个好人被杀死前,k 个坏人先被杀死。**
输入:k
输出:m
#include <cstdio>
using namespace std;
int k, m, begin; //begin为报数1的人
bool ok; //是否符合题意
bool check(int remain) { //remain:还剩下几个人
int res = (begin + m - 1) % remain; //res不一定是出圈人的编号
if (res >= k) { //一圈人从0开始编号,>=k就说明是坏人
begin = res;
return true;
} else
return false;
}
int main() {
scanf("%d", &k);
m = k - 1; //报数到m的人出圈
while (!ok) {
m++; //第一次m从k开始尝试
ok = true;
begin = 0; //设置第一个人,编号从0开始,方便取模运算
for (int i = 0; i < k; i++) //i为出圈人数
if (!check(k + k - i)) { //判断下一个出圈的人是否为坏人
ok = false; //不是坏人,重新枚举下一个m
break;
}
}
printf("%d", m);
return 0;
}