
深度学习
丿回到火星去
walking by the world
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
浅谈深度神经网络 — AlexNet
AlexNetAlexNet是2012年ImageNet竞赛冠军获得者Hinton和他的学生Alex Krizhevsky设计的。也是在那年之后,更多的更深的神经网路被提出,比如优秀的vgg,GoogLeNet。 这对于传统的机器学习分类算法而言,已经相当的出色。新技术AlexNet中包含了几个比较新的技术点,也首次在CNN中成功应用了ReLU、Dropout和LRN等Trick。同时Ale...原创 2019-02-05 20:50:12 · 2285 阅读 · 0 评论 -
图像处理—OpenCV相关简单操作
引言本篇博客只简单介绍下Python中openCV库中对图像的简单处理及相关操作,介绍常用API的使用,方便自己查阅和向读者简单介绍下。但是读者了解但不应局限于此,图像操作对面向API的话,我们很容易就能实现对图像的操作,我们更应该去学习图像操作的原理,无非就是对图像矩阵中像素的一系列的操作,学习这些才能让我们更清楚的去了解图像。1. openCV库的安装最方便的是使用PIP安装会自动下载...原创 2019-03-31 20:10:07 · 695 阅读 · 0 评论 -
理解插值法(拉格朗日、牛顿插值法)
引言我们首先理解下插值法主要用来做什么事:插值法就是利用已知的点建立合适的插值函数 f(x)f(x)f(x) ,未知点 xix_ixi 由插值函数 f(x)f(x)f(x) 可以求出函数值 f(xi)f(x_i)f(xi),用求得的(xi,f(xi))(x_i,f(x_i))(xi,f(xi))近似代替未知点。对于平面上相异(无两点在一条直线上)的 nnn 个点,我们必定可以找到一个 ...原创 2019-04-26 13:43:26 · 11530 阅读 · 0 评论 -
ROI Pooling(感兴趣区域池化)
引言感兴趣区域池化(Region of interest pooling)(也称为RoI pooling)是使用卷积神经网络在目标检测任务中广泛使用的操作。例如,在单个图像中检测多个汽车和行人。其目的是对非均匀尺寸的输入执行最大池化以获得固定尺寸的特征图(例如7×7)。计算机视觉中的两个主要任务是对象分类和目标检测。在第一种情况下,系统应该正确地标记图像中的主要对象。在第二种情况下,它应该为图...原创 2019-05-03 20:38:39 · 21023 阅读 · 1 评论 -
YOLO v1(You Only Look Once)论文解读
由于迁移比较麻烦,参考我的知乎专栏:https://zhuanlan.zhihu.com/p/66972728原创 2019-05-25 17:56:25 · 387 阅读 · 0 评论 -
Soft-NMS (Improving Object Detection With One Line of Code) 论文解读
Improving Object Detection With One Line of Code ,Soft-NMS论文解读,详细介绍Soft-NMS算法原理,另外附有论文地址原创 2019-05-26 15:32:52 · 718 阅读 · 0 评论 -
SSD: Single Shot MultiBox Detector 论文解读
SSD: Single Shot MultiBox Detector Abstract.我们提出了一种利用单个深度神经网络对图像中目标进行检测的方法。我们的方法名为SSD,它将边界框的输出空间离散为一组默认框,每个特征映射位置具有不同的纵横比和原创 2019-05-28 12:05:54 · 505 阅读 · 0 评论 -
滑动平均模型(MA)—tensorflow
在采用梯度下降的方式训练神经网络的时候,我们使用滑动平均模型会在一定的程度上提高最终模型在测试集上的表现。在TensorFlow中提供了tf.train.ExponentialMovingAverage来实现滑动平均模型,在初始化ExponentialMovingAverage的时候,需要提供一个衰减率(decay)。这个衰减率将来控制模型更新的速度,ExponentialMovingAver...原创 2019-03-26 18:04:33 · 1232 阅读 · 5 评论 -
浅谈深度神经网络 — ResNet(DRN)
ResNet(DRN 深度残差神经网络)原创 2019-02-24 20:39:11 · 2318 阅读 · 0 评论 -
浅谈深度神经网络 — RNN,LSTM
RNN(recurrent neural network,循环神经网络)全连接神经网络和卷积神经网络模型中,网络结构都是从输入层到隐含层再到输出层,层与层之间是全连接或是部分连接的,但每层的节点之间都是无连接的。考虑这样的一个问题,如果要预测句子的下一个单词是什么,一般用到当前单词以及前面的单词,因为句子前后单词并不是孤立的。这个时候像卷积,全连接神经网络已经不满足我们的需要。我们需要刻画一个序...原创 2019-02-05 20:51:17 · 2202 阅读 · 0 评论 -
模拟退火算法简单理解
退火算法原创 2019-01-22 12:57:41 · 5920 阅读 · 0 评论 -
空间金字塔池化(Spatial Pyramid Pooling)
简介空间金字塔池化,使得任意大小的特征图都能够转换成固定大小的特征向量,这就是空间金字塔池化的意义(多尺度特征提取出固定大小的特征向量),送入全连接层。整体框架大致为:输入图像,卷积层提取特征,空间金字塔池化提取固定大小特征,全连接层。具体的流程图如下:具体算法的大体流程首先通过选择性搜索(selective search)对待检测的图片进行搜索出2000个候选窗口。这一步和R-CNN...转载 2019-02-14 21:01:52 · 6128 阅读 · 1 评论 -
浅谈深度神经网络 — R-CNN(区域卷积神经网络)R-CNN->Fast R-CNN->Faster R-CNN
浅谈深度神经网络 — R-CNN(区域卷积神经网络)R-CNN->Fast R-CNN->Faster R-CNN原创 2019-02-14 22:00:20 · 6095 阅读 · 6 评论 -
浅谈深度神经网络 — LeNet
LeNetLeNet网络模型结构规模比较小,但包含了卷积层,Pooling层,全连接层,他们构成了现代神经网络的基本组件,后续更复杂的网络模型都离不开这些基本的网络层组件。LeNet-5包含输入层在内共有八层,每一层都包含多个参数(权重)。C层代表的是卷积层,通过卷积操作,可以使源信号特征增强,并降低噪音。S层是一个下采样层, 利用图像局部相关性的原理,对图像进行子抽样,可以减少数据处理量,...原创 2019-02-05 20:49:47 · 892 阅读 · 0 评论 -
浅谈深度神经网络 — CNN
CNN(Convolutional Neural Network,卷积神经网络)引言CNN的出现是因为全连接神经网络无法很好地处理图像数据,主要原因有以下:使用全连接层处理图像最大的问题在于全连接层的参数太多,参数多了除了会导致计算速度变慢,也很容易会导致过拟合问题。所以我们需要一个更加合理的神经网络结构来有效的减少神经网络中的参数个数。卷积神经网络就可以达到这个目的。CNN基本结构输出...原创 2019-02-05 20:50:59 · 1184 阅读 · 0 评论 -
浅谈深度神经网络 — VGG
VGG网络这幅图还是清晰地展现了VGG的网络结构的,VGG由5层卷积层、3层全连接层、最后由softmax输出层构成,层与层之间使用max-pooling(最大化池层)分开,所有隐层的激活单元都采用ReLU函数。(并没有使用LRN,LRN并没有在这个网络中有太大性能提升)模型简介VGG模型是2014年ILSVRC竞赛的第二名,第一名是GoogLeNet。但是VGG模型在多个迁移学习任务中的...原创 2019-02-05 20:51:57 · 1494 阅读 · 0 评论 -
浅谈深度神经网络 — GoogLeNet
GoogLeNetGoogLeNet网络GoogLeNet是2014年Christian Szegedy提出的一种全新的深度学习结构,ImageNet-2014竞赛第一。在这之前的AlexNet、VGG等结构都是通过增大网络的深度(层数)来获得更好的训练效果,但层数的增加会带来很多负作用,比如overfit、梯度消失、梯度爆炸等。inception的提出则从另一种角度来提升训练结果:能更高效...原创 2019-02-27 17:57:51 · 1332 阅读 · 0 评论 -
YOLO9000 Better Faster Stronger 论文阅读
Abstract 我们介绍了YOLO9000,一个最先进的实时对象检测系统,可以检测超过9000个对象类别。首先,我们提出了各种改进YOLO检测方法,既新颖又借鉴了前人的工作。改进后的YOLOv2模型在PASCAL VOC和COCO等标准检测任务上是最先进的。使用一种新颖的多尺度训练方法,同样的YOLOv2模型可以以不同的大小运行,在速度和精度之间提供了一个简单的权衡。原创 2019-05-29 21:46:43 · 263 阅读 · 0 评论