滑动平均模型(MA)—tensorflow

本文介绍了滑动平均模型在神经网络训练中的应用,特别是如何利用TensorFlow的ExponentialMovingAverage类进行实现。通过设置衰减率和num_updates参数,可以控制模型更新速度,并提升模型在测试集上的表现。代码示例展示了具体用法。
摘要由CSDN通过智能技术生成

在采用梯度下降的方式训练神经网络的时候,我们使用滑动平均模型会在一定的程度上提高最终模型在测试集上的表现。

在TensorFlow中提供了tf.train.ExponentialMovingAverage来实现滑动平均模型,在初始化ExponentialMovingAverage的时候,需要提供一个衰减率(decay)。这个衰减率将来控制模型更新的速度,ExponentialMovingAverage对每个变量会维护一个影子变量(shadow variable),这个影子变量的初始值就是相应变量的初始值,而每次运行变量更新时,影子变量的值会更新为:

shadow_variable =  decay × shadow_variable + (1 - decay) × variable

ExponentialMovingAverage还提供了num_updates参数控制decay的大小。如果在ExponentialMovingAverage中提供了num_updates每次使用的衰减率将是:
m i n { d

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值