机器学习之-用k-均值聚类算法对未标注数据分组-具体怎么实现及应用

1、什么叫做k-均值?

它可以发现k个不同的簇,且每个簇的中心采用簇中所含值的均值计算而成。

2、k-均值聚类的算法:

创建k个点作为起始质心(经常是随机选择)

当任意一个点的簇分配结果发生改变时

对数据集中的每个数据点

对每个质心

计算质心与数据点之间的距离

将数据点分配到距其最近的簇

对每一个簇,计算簇中所有点的均值并将均值作为质心

2、过程:

1)加载数据(数据格式是m行n列,其中每行是一个数据点,每列是数据的一个特征值)

2)创建一个m行2列的每个数据点的簇分配结果

3)创建一个初始的簇中心k行n列:(k,n)

3)开始循环:

对于每一个数据点:

对于每个簇中心:

计算该数据点到每个簇中心的距离

得到该数据点最近的簇索引

查看(m,2)里该数据点的簇索引是不是改变,是的话,最外层循环条件为true

对于每个簇中心:

计算以该簇为中心的数据点的平均值,用此值更新(m,2)里该数据点的簇索引值


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值