参考:
http://blog.csdn.net/nieson2012/article/details/51279332
http://www.cnblogs.com/wentingtu/archive/2011/12/22/2297405.html
http://www.cnblogs.com/pinard/p/6156009.html
算法描述:
1、加载数据(训练数据和测试数据),假设训练集总数为N个。
2、去除掉数据集中的某些特征项(无用的特征)。
3、将预测标签从数据集中暂时去除。
4、设定每次选取的特征数目,比如每个样本有M个特征,每次我们只用2个特征。
4、循环创建每棵树:
每次从M个特征里随机选2个特征,并将标签重新加进来
从训练集中有放回的抽取N个样本,并且这个N个样本只包含3个特征,即创建了一个新的数据子集。
用创建的数据子集创建一棵树:
对数据子集进行切分:
先得到数据子集的初始基尼系数。
对于2个选取的特征:
对于特征里的每种取值: