1、M = bwlabel(BW,n)
返回一个和BW(一般是经过膨胀操作的逻辑矩阵)大小相同的L矩阵,包含了标记了BW中每个连通区域的类别标签,这些标签的值为1、2、num(连通区域的个数)。n的值为4或8,表示是按4连通寻找区域,还是8连通寻找,默认为8。
四连通或八连通是图像处理里的基本感念:而8连通,是说一个像素,如果和其他像素在上、下、左、右、左上角、左下角、右上角或右下角连接着,则认为他们是联通的;4连通是指,如果像素的位置在其他像素相邻的上、下、左或右,则认为他们是连接着的,连通的,在左上角、左下角、右上角或右下角连接,则不认为他们连通。
[L,num] = bwlabel(BW,n)
这里num返回的就是BW中连通区域的个数。
举例说明:
BW =
1 1 1 0 0 0 0 0
1 1 1 0 1 1 0 0
1 1 1 0 1 1 0 0
1 1 1 0 0 0 1 0
1 1 1 0 0 0 1 0
1 1 1 0 0 0 1 0
1 1 1 0 0 1 1 0
1 1 1 0 0 0 0 0
按4连通计算,方形的区域,和翻转的L形区域,有用是对角连接,不属于连通,所以分开标记,连通区域个数为3
结果如下:
L =
1 1 1 0 0 0 0 0
1 1 1 0 2 2 0 0
1 1 1 0 2 2 0 0
1 1 1 0 0 0 3 0
1 1 1 0 0 0 3 0
1 1 1 0 0 0 3 0
1 1 1 0 0 3 3 0
1 1 1 0 0 0 0 0
而8连通标记,它们是连通的:
[L, num] = bwlabel(BW,8)
L =
1 1 1 0 0 0 0 0
1 1 1 0 2 2 0 0
1 1 1 0 2 2 0 0
1 1 1 0 0 0 2 0
1 1 1 0 0 0 2 0
1 1 1 0 0 0 2 0
1 1 1 0 0 2 2 0
1 1 1 0 0 0 0 0
这里
num =
2
2、STATS= imfeature(L);
返回值STATS是一个长度为max(L(:))的结构数组,结构数组的相应域定义了每一个区域相应属性下的度量。
如果STATS= imfeature(L,‘basic’),则属性: 'Area', 'Centroid', 和 'BoundingBox' 将被计算。
'Area'是标量,计算所标记区域的像素总个数,也可以认为是标记区域的面积。
'Centroid'是区域的重心。
'BoundingBox'是包含区域的最小矩形,该区域应在最小矩形内部(外接矩形)。
小矩形的参数为:
[0.5 42.5 5 28]
表示[x,y,width,height]
'BoundingBox'
是1行ndims(L)*2列的向量,即包含相应区域的最小矩形。BoundingBox 形式为 [ul_corner boxwidth ],这里 ul_corner 以 [x y z ...] 的坐标形式给出边界盒子的左上角、boxwidth 以 [x_width y_width] 形式指出边界盒子沿着每个维数方向的长度。