再探组合计数和容斥原理

组合计数和容斥原理

Q1: 推导错位排列。

错位排列: 1 ∼ n , n 个 数 每 个 数 都 不 在 原 位 的 排 列 的 数 量 1 \sim n , n个数每个数都不在原位的排列的数量 1nn

集合的角度思考问题,先使用暴力打表的办法, 得到 f ( 4 ) = 9 f(4) = 9 f(4)=9 , 经过观察,可以得到 f ( n ) = n − 1   ×   ? f(n) = n-1 \ \times \ ? f(n)=n1 × ?

分类讨论下一个位置怎么填,

对于 2 1 4 3 填完2之后,是在 2 , 3 , 4 {2, 3, 4} 2,3,4 三个位置填 1 , 3 , 4 1, 3, 4 1,3,4 规律不显然,如果我们扩展一下,把 n n n 变大 , 假设 n = 8 n = 8 n=8

1 2 3 4 5 6 7 8
2 ? ? ? ? ? ? ?
  1 3 4 5 6 7 8
1.考虑第一个位置不同的数,第二个数如果就是填2的话,那么问题变成了3~8的错位排列,f(n-2)
2.如果第2个位置不填1,可以把第2个位置就看成第一个位置(两个问题是等价的),问题转换成了f(n-1)。

综上有错位排列公式:
f ( n ) = ( n − 1 ) ∗ [ f ( n − 1 ) + f ( n − 2 ) ] f ( 0 ) = 1 f(n) = (n-1) * [f(n-1)+f(n-2)]\\ f(0)=1 f(n)=(n1)[f(n1)+f(n2)]f(0)=1

1 0  
2 1
3 2
4 9
5 44
6 265
7 1854
8 14833
9 133496
10 1334961
11 14684570
12 176214841
2 1 4 3
2 3 4 1
2 4 1 3

3 1 4 2
3 4 1 2
3 4 2 1

4 1 2 3
4 3 1 2
4 3 2 1
2 1 4 5 3
2 1 5 3 4
2 3 1 5 4
2 3 4 5 1
2 3 5 1 4
2 4 1 5 3
2 4 5 1 3
2 4 5 3 1
2 5 1 3 4
2 5 4 1 3
2 5 4 3 1

3 1 2 5 4
3 1 4 5 2
3 1 5 2 4
3 4 1 5 2
3 4 2 5 1
3 4 5 1 2
3 4 5 2 1
3 5 1 2 4
3 5 2 1 4
3 5 4 1 2
3 5 4 2 1

4 1 2 5 3
4 1 5 2 3
4 1 5 3 2
4 3 1 5 2
4 3 2 5 1
4 3 5 1 2
4 3 5 2 1
4 5 1 2 3
4 5 1 3 2
4 5 2 1 3
4 5 2 3 1

5 1 2 3 4
5 1 4 2 3
5 1 4 3 2
5 3 1 2 4
5 3 2 1 4
5 3 4 1 2
5 3 4 2 1
5 4 1 2 3
5 4 1 3 2
5 4 2 1 3
5 4 2 3 1
容斥原理

求解不规则集合的个数,化并为交(求并集很多情况比求交要困难)。
∣   ⋃ i = 1 n A i ∣   =   ∑ ϕ ≠ I ⊂ ∣ n ∣ ( − 1 ) ∣ I ∣ + 1 ∣ ⋂ i ∈ I A i ∣ \mid \ \bigcup_{i=1}^{n}A_i\mid \ = \ \sum_{\phi \neq I \subset\mid n \mid} (-1)^{\mid I \mid+1}\mid \bigcap_{i \in I}A_i\mid  i=1nAi = ϕ=In(1)I+1iIAi
( − 1 ) ∣ I ∣ + 1   = 1   →   ∣ I ∣   ∈ 1 , 3 , 7 , . . . (-1)^{\mid I\mid+1} \ = 1 \ \rightarrow \ \mid I \mid \ \in 1,3,7,... (1)I+1 =1  I 1,3,7,...

( − 1 ) ∣ I ∣ + 1   = − 1   →   ∣ I ∣   ∈ 2 , 4 , 6 , . . . (-1)^{\mid I\mid+1} \ = -1 \ \rightarrow \ \mid I \mid \ \in 2,4,6,... (1)I+1 =1  I 2,4,6,...

考虑使用容斥原理推导欧拉函数

集合和并是具有非常一般的结构

ϕ ( n ) 是 1 , 2 , 3 , . . n 中 有 n 互 质 的 数 的 个 数 。 \phi(n) 是1,2,3,..n 中有n互质的数的个数。 ϕ(n)1,2,3,..nn

法一:非常直观的思路就是使用for循环打表枚举。

法二:容斥原理能够实现将一些不规则的集合的并转成集合的交来求解。

原问题可以转成 n − 1 , 2 , 3 , . . . , n 中 与 n 不 互 质 的 数 的 个 数 n - 1,2,3,...,n 中与n不互质的数的个数 n1,2,3,...,nn

假设我们要求 ϕ ( 5 ∗ 7 ∗ 1 3 2 ) \phi(5*7*13^{2}) ϕ(57132) , 很明显 5 , 7 , 13 5,7,13 5,7,13 n n n 的质因子,他们各自的倍数一定是与 n n n 不互质的。

所以有:

α 1 : 5 , 10 , 15 , . . . , n \alpha_1 : {5,10,15,...,n} α1:5,10,15,...,n

α 2 : 7 , 14 , 21 , . . . , n \alpha_2 : {7,14,21,...,n} α2:7,14,21,...,n

α 3 : 13 , 26 , 39 , . . . , n \alpha_3 : {13,26,39,...,n} α3:13,26,39,...,n

那么 1 , 2 , 3 , . . . , n 1,2,3,...,n 1,2,3,...,n 中与n不互质的数的个数也就变成了 ∣ α 1 ∪ α 2 ∪ α 3 ∣ \mid \alpha_1 \cup\alpha_2 \cup \alpha_3\mid α1α2α3

将上边的式子使用容斥原理展开,整理,有。
ϕ ( n )   =   ∑ d ∣ n μ ( d ) ⋅ n d \phi(n) \ = \ \sum_{d|n} \mu(d) \cdot \frac{n}{d} ϕ(n) = dnμ(d)dn
μ ( n )   =   ( − 1 k ) ( n 是 k 个 素 数 的 乘 积 ) 莫 比 乌 斯 函 数 \mu(n) \ = \ (-1^{k})(n是k个素数的乘积) 莫比乌斯函数 μ(n) = (1k)(nk)

数学的魅力,容斥原理之所以是原理

容斥原理:偏序集上Mobius反演在Boolean Lattice上的应用(1964)
g ( A )   =   ∑ s ⊆ A f ( S ) → f ( A ) = ∑ s ⊆ A μ ( A − S ) g ( S ) g(A) \ = \ \sum_{s\subseteq A} f(S) \rightarrow f(A) =\sum_{s\subseteq A} \mu(A-S)g(S) g(A) = sAf(S)f(A)=sAμ(AS)g(S)
参考资料jyy组合数学

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值