论文翻译
To_1_oT
机器学习、深度学习、计算机视觉,欢迎学习交流。
展开
-
基于深度学习的场景文本检测和识别(Scene Text Detection and Recognition)综述
1. 引言文字是人类最重要的创作之一,它使人们在时空上可以有效地、可靠的传播或获取信息成为可能。场景中的文字的检测和识别对我们理解世界很有帮助,它应用在图像搜索、即时翻译、机器人导航、工业自动化等领域。一个场景文字识别检测示例:目前,场景文字检测和识别主要存在3个难点:自然场景中文本多样性和变异性:文本的颜色、大小、字体、形状、方向、宽高比等属性变化较多。背景的复杂性和干扰:背景存在与文本相似的形状的物体(例如砖块、窗户、交通标志等);存在遮挡问题。不完善的成像条件(低分辨率、失真、模糊、原创 2020-12-04 18:38:58 · 12310 阅读 · 3 评论 -
论文翻译之YOLOv2
摘要我们介绍了一个最先进的实时目标检测系统YOLO9000,它可以检测超过9000个目标类别。首先,我们对YOLO检测方法提出了各种改进,既新颖又借鉴了前人的工作。改进后的YOLOv2是在如PASCAL VOC和COCO的标准检测任务上最先进的模型。YOLOv2使用一种新颖的多尺度训练方法,同一个YOLOv2模型可以在不同的size下运行,在速度和精度之间提供了一个简单的折衷。在67帧/秒的速度...原创 2020-04-13 18:19:34 · 457 阅读 · 0 评论 -
论文翻译之YOLO
摘要我们推出了一个新的目标检测方法—YOLO。先前有关目标检测的工作将分类器用于执行检测。取而代之的是,我们将目标检测框架化为空间分隔的边界框和相关类概率的回归问题。单个神经网络可以在一次评估中直接从完整图像中预测边界框和类概率。 由于整个检测pipeline是单个网络,因此可以直接在检测性能上进行端到端优化。我们的统一体系结构非常快。 我们的基础YOLO模型以每秒45帧的速度实时处理图像。 ...原创 2020-04-09 18:32:13 · 736 阅读 · 0 评论 -
论文翻译之Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
摘要最先进的物体检测网络依靠区域提议(proposal)算法来假设物体的位置。 SPPnet [1]和Fast R-CNN [2]之类的进步减少了这些检测网络的运行时间,暴露了区域提议计算的瓶颈。在这项工作中,我们介绍了一个区域提议网络(RPN),该区域提议网络与检测网络共享全图像卷积特征,从而实现几乎免费的区域提议。RPN是一个完全卷积的网络,可以同时预测每个位置的对象边界和对象得分。对RPN...原创 2020-04-08 16:14:02 · 1944 阅读 · 0 评论 -
论文翻译之Enriched Feature Guided Refinement Network for Object Detection
摘要我们提出了一个单阶段检测框架,该框架共同解决了多尺度目标检测和类不平衡的问题。 我们没有设计更深层的网络,而是引入了一种简单而有效的特征丰富化方案来生成多尺度的上下文特征。我们进一步引入了一种级联的细化方案,该方案首先将多尺度的上下文特征注入到单个模型的预测层中。 级检测器,以丰富其判别能力以进行多尺度检测。 其次,级联细化方案通过细化锚和丰富的特征以改善分类和回归来解决类不平衡问题。 实验...原创 2019-12-17 20:42:31 · 2030 阅读 · 2 评论