通过构造了对称的3×3×3卷积核来利用3D卷积学习时空特征,计算效率高。
论文地址:http://vlg.cs.dartmouth.edu/c3d/c3d_video.pdf
1. 摘要
本文提出了一种简单而有效的时空特征学习方法,使用在大规模有监督视频数据集上训练的3D 卷积网络。本文的发现有三个方面:
1)与2D ConvNets相比,3D ConvNets更适合于时空特征学习;
2)一个在所有层都有3 × 3 × 3卷积核的同质结构是3D ConvNets的最佳性能结构;
3)使用3D卷积学习到的特征,使用简单的线性分类器在4个不同的基准上均优于最新的方法。
此外,它的特点是基于3D卷积的快速推理,计算效率非常高。而且在概念上非常简单,易于训练和使用。
2. 相关工作
2.1 传统行为识别
Laptev和Lindeberg通过将Harris角点检测器扩展到3D,提出了时空兴趣点(STIPs),SIFT和HOG也扩展到SIFT-3D和HOG3D用于动作识别。Dollar等人提出了用于行为识别的长方体特征。萨达南德和科尔索建立了行为识别数据库。最近,王等人提出了改进的密集轨道(iDT)这是目前最先进的手工制作特征。iDT描述符显示了时间信号可以不同于空间信号的处理方式。它不是将Harris角点检测器扩展到3D,而是从视频帧中密集采样的特征点开始,利用光流对其进行跟踪。对于每个跟踪器,沿轨迹提取不同的手工特征。尽管该