【创作赢红包】关于独立事件与互斥事件关系的讨论

2023/3/29 关于独立事件与互斥事件关系的讨论

在贾俊平《统计学》第六版书P107有如下论述:

“互斥事件一定是相互依赖(不独立),相互依赖的事件不一定是互斥的。不互斥事件可能是独立的,也可能是独立的,然而独立事件不可能是互斥的。”

下文将针对上述话语进行阐述:

1. 互斥事件的含义

在概率论定义中,两事件互斥如 A , B ⊂ Ω A,B\sub\Omega A,BΩ事件互斥则表明: A ∩ B = ∅ A\cap B=\varnothing AB=(最好不要将定义记忆为 P ( A ∩ B ) = 0 P(A\cap B)=0 P(AB)=0见4.

通俗的理解:

  1. 若A发生,则B不能发生,为什么?

    因为一次实验后只能得到一个基本事件(基本事件的重要性质),而事件是样本空间中基本事件的集合,也就是说一次实验后,若事件A发生,则表明该次试验结果的那个基本事件 ω \omega ω ω ∈ A \omega\in A ωA而由于A,B互斥, A ∩ B = ∅ A\cap B=\varnothing AB= ω ∉ B \omega\notin B ω/B,即若A发生,则B不能发生。

  2. 若A不发生,则B发生与不发生都可以。

    在这种情况下,B发生情况与1.情况类似。B不发生也不违法 A ∩ B = ∅ A\cap B=\varnothing AB=,也即是此次试验结果得到的基本事件 ω ∉ A \omega\notin A ω/A ω ∉ B \omega\notin B ω/B C ⊂ Ω , ω ∈ C C\sub\Omega,\omega\in C CΩ,ωC,基本事件属于C,不违反定义。
    在这里插入图片描述

  3. 对立事件

    在互斥事件的上再施加 A ∪ B = Ω A\cup B=\Omega AB=Ω的条件将会得到另一个概念——对立事件,也即是要么发生A要么发生B,两事件不能同时发生

    对立事件的性质如下:

    1. P ( A ∩ B ) = 0 ⇐ A ∩ B = ∅ P(A\cap B)=0\Leftarrow A\cap B=\varnothing P(AB)=0AB=
    2. P ( A ∪ B ) = 1 ⇐ A ∪ B = Ω P(A\cup B)=1\Leftarrow A\cup B=\Omega P(AB)=1AB=Ω(不充要见4.

    可以将对立事件看成是对样本空间的一个划分

综上:A,B为互斥事件则表明A,B两事件中最多发生一个,也可能一个都不发生。

2. 独立事件的含义

在概率论中的含义为 P ( B ∣ A ) = P ( B ) P ( A ∣ B ) = P ( A ) P(B|A)=P(B)\quad P(A|B)=P(A) P(BA)=P(B)P(AB)=P(A)

由条件概率的概念引申出来也即两事件的发生与否都与对方无关。

3. 贾书上的论述

  1. “互斥事件一定是相互依赖不独立”

    两事件互斥,则表明当一个事件发生时另一个事件不发生,违背了独立事件的定义,因此互斥事件时相互依赖的不独立的。

  2. “相互依赖的事件不一定是互斥的”

    因为相互依赖这种关系比较宽泛,比如事件 A ⊂ B A\sub B AB则A发生,B也发生,这也是相互依赖关系,此时A,B便不互斥了 A ∩ B = A A\cap B=A AB=A,当然也可能互斥,即这个相互依赖关系就是指 A ∩ B = ∅ A\cap B=\varnothing AB=

  3. “不互斥事件可能是独立的,也可能是不独立的”

    A B ≠ ∅ AB\not=\varnothing AB= P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B) P ( A B ) ≠ 0 P(AB)\not=0 P(AB)=0。此时若 A = Ω , ∀ B ≠ ∅ a n d B ⊂ Ω ⇒ A B = B ≠ ∅ A=\Omega,\forall B\not=\varnothing and B\sub\Omega\Rightarrow AB=B\not=\varnothing A=Ω,B=andBΩAB=B=,则 P ( A B ) = P ( B ) = 1 × P ( B ) = P ( A ) P ( B ) ⇒ P(AB)=P(B)=1\times P(B)=P(A)P(B)\Rightarrow P(AB)=P(B)=1×P(B)=P(A)P(B)A,B事件独立

    可能有人会有疑问 Ω \Omega Ω怎么会和其子集独立呢?

    因为必然事件是必然发生的 与其它事件是否发生的无关的,独立事件是基于概率的定义的,并非是所谓无关的,它们是可以有关的,但这个关系是不能影响到相互事件发生的概率也即 P ( A ∣ B ) = P ( A ) P ( B ∣ A ) = P ( B ) P(A|B)=P(A)\quad P(B|A)=P(B) P(AB)=P(A)P(BA)=P(B)

    不独立的情况容易举例:即下面情况即可
    在这里插入图片描述

  4. “然而独立事件是不可能是互斥的”

    这句话是有争议的,但也是可以理解的,本文更偏向于认为这句话是正确的。为什么会有争议,因为若 A = ∅ , ∀ B ∈ Ω A=\varnothing,\forall B\in \Omega A=,BΩ,则这句话是有误的,因为A,B既互斥( A B = ∅ AB=\varnothing AB=)又独立 P ( A B ) = 0 = P ( A ) P ( B ) P(AB)=0=P(A)P(B) P(AB)=0=P(A)P(B)

    但为什么本文偏向于认为是对的呢,因为这句话是更符合直观理解:因为,若事件A,B独立,假设A,B独立,则A的发生必然会影响到B的发生,因为此时B必然不能发生,所以独立事件应当不能是互斥的,而且“独立事件不能是互斥的”,只有上述的一个反例,所以本文更偏向于认为正确的,当然加上两事件中不存在不可能事件那将更加精确。

4. 补坑

  1. 为何不要将互斥事件定义记忆成 P ( A B ) = 0 P(AB)=0 P(AB)=0?

    此处先说明一个概念——随机变量,随机变量基于随机事件进行定义的,是随机事件的数量化,如掷硬币试验,记一次试验基本事件A:字面;基本事件B:花面。

    则将试验的结果记为X,X=1:A发生,X=0:B发生。这是离散随机变量的定义,相应的也将有连续型随机变量的定义,此处不进行赘述(如有问题请翻阅概率论有关书籍)。而在连续型定义中有 P ( X = a ) = 0 P(X=a)=0 P(X=a)=0,也即X取某个点的概率为0,这也就是问题所在,也即在连续型随机变量中 P ( A B ) = 0 P(AB)=0 P(AB)=0,与 A B = ∅ AB=\varnothing AB=不等价了,因为一次实验中 X = a X=a X=a的结果是会出现的,但在概率上它为0,也即 P ( A B ) = 0 ⇔ A B = ∅ P(AB)=0\Leftrightarrow AB=\varnothing P(AB)=0AB=在连续性随机变量中不成立,但在离散型中是成立的。

  2. P ( A ∪ B ) = 1 P(A\cup B)=1 P(AB)=1 A ∪ B = Ω A\cup B=\Omega AB=Ω不等价

    同上理在连续型随机变量中, P ( X ≠ a ) = 1 = 1 − P ( X = a ) P(X\not=a)=1=1-P(X=a) P(X=a)=1=1P(X=a),而在一次实验的结果中 X = a X=a X=a并非必然的。

  3. 故应当将 P ( A B ) = 0 ⇐ A B = ∅ P(AB)=0\Leftarrow AB=\varnothing P(AB)=0AB= P ( A ∪ B ) = 1 ⇐ A ∪ B = Ω P(A\cup B)=1\Leftarrow A\cup B=\Omega P(AB)=1AB=Ω记忆为相应事件的性质,而并非定义!定义得充要,性质不必需欧~~

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哈哈19

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值