2023/3/29 关于独立事件与互斥事件关系的讨论
在贾俊平《统计学》第六版书P107有如下论述:
“互斥事件一定是相互依赖(不独立),相互依赖的事件不一定是互斥的。不互斥事件可能是独立的,也可能是独立的,然而独立事件不可能是互斥的。”
下文将针对上述话语进行阐述:
1. 互斥事件的含义
在概率论定义中,两事件互斥如A,B⊂ΩA,B\sub\OmegaA,B⊂Ω事件互斥则表明:A∩B=∅A\cap B=\varnothingA∩B=∅(最好不要将定义记忆为P(A∩B)=0P(A\cap B)=0P(A∩B)=0见4.)
通俗的理解:
-
若A发生,则B不能发生,为什么?
因为一次实验后只能得到一个基本事件(基本事件的重要性质),而事件是样本空间中基本事件的集合,也就是说一次实验后,若事件A发生,则表明该次试验结果的那个基本事件ω\omegaω,ω∈A\omega\in Aω∈A而由于A,B互斥,A∩B=∅A\cap B=\varnothingA∩B=∅则ω∉B\omega\notin Bω∈/B,即若A发生,则B不能发生。
-
若A不发生,则B发生与不发生都可以。
在这种情况下,B发生情况与1.情况类似。B不发生也不违法A∩B=∅A\cap B=\varnothingA∩B=∅,也即是此次试验结果得到的基本事件ω∉A\omega\notin Aω∈/A且ω∉B\omega\notin Bω∈/B,C⊂Ω,ω∈CC\sub\Omega,\omega\in CC⊂Ω,ω∈C,基本事件属于C,不违反定义。
-
对立事件
在互斥事件的上再施加A∪B=ΩA\cup B=\OmegaA∪B=Ω的条件将会得到另一个概念——对立事件,也即是要么发生A要么发生B,两事件不能同时发生
对立事件的性质如下:
- P(A∩B)=0⇐A∩B=∅P(A\cap B)=0\Leftarrow A\cap B=\varnothingP(A∩B)=0⇐A∩B=∅
- P(A∪B)=1⇐A∪B=ΩP(A\cup B)=1\Leftarrow A\cup B=\OmegaP(A∪B)=1⇐A∪B=Ω(不充要见4.)
可以将对立事件看成是对样本空间的一个划分
综上:A,B为互斥事件则表明A,B两事件中最多发生一个,也可能一个都不发生。
2. 独立事件的含义
在概率论中的含义为P(B∣A)=P(B)P(A∣B)=P(A)P(B|A)=P(B)\quad P(A|B)=P(A)P(B∣A)=P(B)P(A∣B)=P(A)
由条件概率的概念引申出来也即两事件的发生与否都与对方无关。
3. 贾书上的论述
-
“互斥事件一定是相互依赖不独立”
两事件互斥,则表明当一个事件发生时另一个事件不发生,违背了独立事件的定义,因此互斥事件时相互依赖的不独立的。
-
“相互依赖的事件不一定是互斥的”
因为相互依赖这种关系比较宽泛,比如事件A⊂BA\sub BA⊂B则A发生,B也发生,这也是相互依赖关系,此时A,B便不互斥了A∩B=AA\cap B=AA∩B=A,当然也可能互斥,即这个相互依赖关系就是指A∩B=∅A\cap B=\varnothingA∩B=∅
-
“不互斥事件可能是独立的,也可能是不独立的”
若AB≠∅AB\not=\varnothingAB=∅且P(AB)=P(A)P(B)P(AB)=P(A)P(B)P(AB)=P(A)P(B)得P(AB)≠0P(AB)\not=0P(AB)=0。此时若A=Ω,∀B≠∅andB⊂Ω⇒AB=B≠∅A=\Omega,\forall B\not=\varnothing and B\sub\Omega\Rightarrow AB=B\not=\varnothingA=Ω,∀B=∅andB⊂Ω⇒AB=B=∅,则P(AB)=P(B)=1×P(B)=P(A)P(B)⇒P(AB)=P(B)=1\times P(B)=P(A)P(B)\RightarrowP(AB)=P(B)=1×P(B)=P(A)P(B)⇒A,B事件独立
可能有人会有疑问Ω\OmegaΩ怎么会和其子集独立呢?
因为必然事件是必然发生的 与其它事件是否发生的无关的,独立事件是基于概率的定义的,并非是所谓无关的,它们是可以有关的,但这个关系是不能影响到相互事件发生的概率也即P(A∣B)=P(A)P(B∣A)=P(B)P(A|B)=P(A)\quad P(B|A)=P(B)P(A∣B)=P(A)P(B∣A)=P(B)
不独立的情况容易举例:即下面情况即可
-
“然而独立事件是不可能是互斥的”
这句话是有争议的,但也是可以理解的,本文更偏向于认为这句话是正确的。为什么会有争议,因为若A=∅,∀B∈ΩA=\varnothing,\forall B\in \OmegaA=∅,∀B∈Ω,则这句话是有误的,因为A,B既互斥(AB=∅AB=\varnothingAB=∅)又独立P(AB)=0=P(A)P(B)P(AB)=0=P(A)P(B)P(AB)=0=P(A)P(B)。
但为什么本文偏向于认为是对的呢,因为这句话是更符合直观理解:因为,若事件A,B独立,假设A,B独立,则A的发生必然会影响到B的发生,因为此时B必然不能发生,所以独立事件应当不能是互斥的,而且“独立事件不能是互斥的”,只有上述的一个反例,所以本文更偏向于认为正确的,当然加上两事件中不存在不可能事件那将更加精确。
4. 补坑
-
为何不要将互斥事件定义记忆成P(AB)=0P(AB)=0P(AB)=0?
此处先说明一个概念——随机变量,随机变量基于随机事件进行定义的,是随机事件的数量化,如掷硬币试验,记一次试验基本事件A:字面;基本事件B:花面。
则将试验的结果记为X,X=1:A发生,X=0:B发生。这是离散随机变量的定义,相应的也将有连续型随机变量的定义,此处不进行赘述(如有问题请翻阅概率论有关书籍)。而在连续型定义中有P(X=a)=0P(X=a)=0P(X=a)=0,也即X取某个点的概率为0,这也就是问题所在,也即在连续型随机变量中P(AB)=0P(AB)=0P(AB)=0,与AB=∅AB=\varnothingAB=∅不等价了,因为一次实验中X=aX=aX=a的结果是会出现的,但在概率上它为0,也即P(AB)=0⇔AB=∅P(AB)=0\Leftrightarrow AB=\varnothingP(AB)=0⇔AB=∅在连续性随机变量中不成立,但在离散型中是成立的。
-
P(A∪B)=1P(A\cup B)=1P(A∪B)=1与A∪B=ΩA\cup B=\OmegaA∪B=Ω不等价
同上理在连续型随机变量中,P(X≠a)=1=1−P(X=a)P(X\not=a)=1=1-P(X=a)P(X=a)=1=1−P(X=a),而在一次实验的结果中X=aX=aX=a并非必然的。
-
故应当将P(AB)=0⇐AB=∅P(AB)=0\Leftarrow AB=\varnothingP(AB)=0⇐AB=∅和P(A∪B)=1⇐A∪B=ΩP(A\cup B)=1\Leftarrow A\cup B=\OmegaP(A∪B)=1⇐A∪B=Ω记忆为相应事件的性质,而并非定义!定义得充要,性质不必需欧~~