S9.2再论实数系-实数闭区间的紧致性

(2)实数闭区间的紧致性

1、覆盖:设E是一个由实数开区间构成的集合,S是一个实数子集,如果 ∀ x ∈ S \forall x\in S xS有区间 ( a , b ) ∈ E , s . t . x ∈ ( a , b ) (a,b)\in E,s.t.x\in (a,b) (a,b)E,s.t.x(a,b)则称E是S的一个覆盖。

S ⊂ ⋃ E α ∈ E E α S\subset\bigcup_{E_\alpha\in E}E_\alpha SEαEEα

有限覆盖:E是由有限个区间组成

无限覆盖:E是由无限个区间组成

直观理解:在这里插入图片描述

2、(博雷尔)有限覆盖定理:实数闭区间 [ a , b ] [a,b] [a,b]的任何一个覆盖E,必存在有限的子覆盖

可以理解为 [ a , b ] ⊂ ⋃ n = 1 N E n , E n ⊂ E [a,b]\subset\bigcup_{n=1}^{N}En,E_n\subset E [a,b]n=1NEn,EnE一定成立

证明:利用区间套定理采用反证法

即[a,b]无E的有限的子覆盖,记a1=a,b1=b.用 a + b 2 \frac{a+b}{2} 2a+b将[a,b]一分为二,则这两子区间至少有一个没有E的有限子覆盖,记为[a2,b2],反复上述操作,便得到一个区间序列{[an,bn]},bn-an= b 1 − a 1 2 n − 1 → 0 \frac{b_1-a_1}{2^{n-1}}\to0 2n1b1a10易得其满足区间套的定义1

在这里插入图片描述

由区间套定理1在这里插入图片描述

则知存在唯一的r属于每个[an,bn], lim ⁡ n → ∞ a n = lim ⁡ a → ∞ b n = r \lim_{n\to \infty}a_n=\lim_{a\to\infty}b_n=r limnan=limabn=r 且存在 ( α , β ) ∈ E , 使 r ∈ ( α , β ) (\alpha,\beta)\in E,使r\in(\alpha,\beta) (α,β)E,使r(α,β),因此当n取得充分大时,便有 [ a n , b n ] ⊂ ( α , β ) [a_n,b_n]\subset(\alpha,\beta) [an,bn](α,β)即[an,bn]被E中的一个区间盖住,与假设构造矛盾,故不成立证毕⚡️

当定理中的闭区间改为开时定理便不再成立例如 { ( 1 n , 1 ) ∣ n = 1 , 2 , …   } \{(\frac{1}{n},1)|n=1,2,\dots\} {(n1,1)n=1,2,}易得其构成开区间的(0,1)的覆盖但是其无有限的子覆盖

3、子数列:在给定的一个数列中,不改变数列的次序,从数列中有次序的抽取无限个数构成其一个子数列

子数列的下标为 { x n k } \{x_{n_k}\} {xnk} n k 为 原 数 列 的 n k 项 子 数 列 中 的 第 k 项 n_k为原数列的n_k项子数列中的第k项 nknkk

例如 lim ⁡ k → ∞ x n k = lim ⁡ n → ∞ x n \lim_{k\to\infty}x_{n_k}=\lim_{n\to\infty}x_n limkxnk=limnxn

证明:由子数列的构造得 n k ≥ k n_k\ge k nkk

∀ ϵ > 0 , ∃ N ∈ N + , 当 n > N 时 有 ∣ x n − a ∣ < ϵ \forall \epsilon>0,\exist N\in N_+,当n>N时有|x_n-a|<\epsilon ϵ>0,NN+,n>Nxna<ϵ ( 不 妨 令 lim ⁡ n → ∞ x n = a ) (不妨令\lim_{n\to \infty}x_n=a) (limnxn=a)则对于{xnk}来说定然可以找到一个Nk使得其满足下列式子

∣ x n k − a ∣ < ϵ |x_{n_{k}}-a|<\epsilon xnka<ϵ即证毕⚡️

推论:若在{xn}中有一个子列不收敛,或有两个子列不收敛于同一个极限,则{xn}发散(易证)

4、(波尔察诺-魏尔斯特拉斯)紧致性定理:有界数列必有收敛子数列(一般叫做致密性定理)

证明:在这里插入图片描述

5、在探讨实数闭区间的紧致性时以下定理相互等价

  1. 有限覆盖定理:实数闭区间的任何一个覆盖必有有限个子覆盖
  2. 致密性定理:有界数列必有收敛子数列
  3. 区间套定理:一个实数的区间套 { [ a n , b n ] } 必 存 在 一 个 实 数 r , ⋂ i = 1 n [ a i , b i ] = r \{[a_n,b_n]\}必存在一个实数r,\bigcap_{i=1}^{n}[a_i,b_i]=r {[an,bn]}ri=1n[ai,bi]=r

下证明3条定理的各个的等价性(一般只需要证明3次,但为初学为了更深刻的理解便证明6次)

1 → 2 1\to2 12在这里插入图片描述

2 → 1 2\to1 21:证明:采用反证法设H= { ( a n , b n ) } \{(a_n,b_n)\} {(an,bn)}为[a,b]的一个无限开覆盖

可以按以下条件剔除多余的开区间

  1. H中任意开区间都不包含于H中其它开区间的并

    ∀ x ∈ ( a , b ) , x 至 多 属 于 H 中 的 两 项 \forall x\in(a,b),x至多属于H中的两项 x(a,b),xH

  2. a,b分别仅属于H中的一个开区间

  3. H中任意一开区间内至少含有[a,b]内一点

在这里插入图片描述

如此构造的原因是形成一个如图1的一个接一个的子覆盖而不是图2中的某个覆盖套在两个覆盖的并里面这样的话 { a n } 与 { b n } 便 递 增 了 \{a_n\}与\{b_n\}便递增了 {an}{bn}便

如此定义后H仍是开覆盖,且{an},{bn}均有界,故{bn-an}也有界

假设[a,b]不能由有限个H中的开区间覆盖

由致密性定理得{bn-an}中定存在收敛子数列{ b n ’ − a n ′ b_n^{’}-a_n^{'} bnan}( a n ’ , b n ′ ∈ [ a , b ] ) a_n^{’},b_n^{'}\in[a,b]) anbn[a,b]) s . t . lim ⁡ n → ∞ ( b n ’ − a n ′ ) = 0 s.t.\lim_{n\to \infty}(b_n^{’}-a_{n}^{'})=0 s.t.limn(bnan)=0

否则, ∃ ϵ > 0 , s . t . ∀ a n , b n ∈ [ a , b ] , b n − a n > ϵ \exist\epsilon>0,s.t.\forall a_n,b_n\in[a,b],b_n-a_n>\epsilon ϵ>0,s.t.an,bn[a,b],bnan>ϵ

则只需有限个H中的开区间即可覆盖[a,b],矛盾

在这里插入图片描述

由致密性定理, { a n ’ } 、 { b n ′ } \{a_n^{’}\}、\{b_n^{'}\} {an}{bn}中分别存在收敛子列 { a n ′ ′ } 、 { b n ’ ’ } \{a_n^{''}\}、\{b_n^{’’}\} {an}{bn}

∵ lim ⁡ n → ∞ ( b n ′ ′ − a n ′ ′ ) = 0 ∴ lim ⁡ n → ∞ a n ′ ′ = lim ⁡ n → ∞ b n ′ ′ = x 0 ∈ [ a , b ] \because \lim_{n\to \infty}(b_n^{''}-a_n^{''})=0\therefore\lim_{n\to \infty}a_{n}^{''}=\lim_{n\to\infty}b_n^{''}=x_0\in[a,b] limn(bnan)=0limnan=limnbn=x0[a,b]

∴ ∀ ϵ > 0 , ∃ N ∈ N + , 当 n > N 时 , s . t . ∣ b n − a n ∣ < ϵ \therefore\forall\epsilon>0,\exist N\in N_+,当n>N时,s.t.|b_n-a_n|<\epsilon ϵ>0,NN+,n>Ns.t.bnan<ϵ 即 a n , b n ∈ U o ( x 0 , ϵ ) 即a_n,b_n\in U^{o}(x_0,\epsilon) an,bnUo(x0,ϵ)

即x0属于H中无限个开区间于是原假设不成立证毕⚡️

1 → 3 1\to3 13:证明:利用反证法即存在区间套 { [ a n , b n ] } \{[a_n,b_n]\} {[an,bn]}

⋂ n = 1 ∞ [ a n , b n ] = ∅ \bigcap^{\infty}_{n=1}[a_n,b_n]=\varnothing n=1[an,bn]=

记开区间

( α n , β n ) = ( a 1 − 1 , a n ) , ( α n ’ , β n ′ ) = ( b n , b 1 + 1 ) (\alpha_n,\beta_n)=(a_1-1,a_n),(\alpha_n^{’},\beta_n^{'})=(b_n,b_1+1) (αn,βn)=(a11,an),(αn,βn)=(bn,b1+1)

在这里插入图片描述

( α n , β n ) ⋃ ( α n ’ , β n ′ ) = ( a 1 − 1 , b 1 + 1 ) (\alpha_n,\beta_n)\bigcup(\alpha_n^{’},\beta_{n}^{'})=(a_1-1,b_1+1) (αn,βn)(αn,βn)=(a11,b1+1) \ [ a n , b n ] [a_n,b_n] [an,bn]

这时 E = { ( α n , β n ) , ( α n ’ , β n ′ ) ∣ n = 1 , 2 , … , n } E=\{(\alpha_n,\beta_n),(\alpha_n^{’},\beta_n^{'})|n=1,2,\dots,n\} E={(αn,βn),(αnβn)n=1,2,,n}构成了 [ a 1 , b 1 ] 的 覆 盖 [a_1,b_1]的覆盖 [a1,b1]

为覆盖的证明: ∀ x ∈ [ a 1 , b 1 ] \forall x\in[a_1,b_1] x[a1,b1],若 x ∉ x\notin x/ ( α n , β n ) ⋃ ( α n ’ , β n ′ ) (\alpha_n,\beta_n)\bigcup(\alpha_n^{’},\beta_{n}^{'}) (αn,βn)(αn,βn)

x ∈ [ a n , b n ] 与 x\in[a_n,b_n]与 x[an,bn] ⋂ n = 1 ∞ [ a n , b n ] = ∅ \bigcap^{\infty}_{n=1}[a_n,b_n]=\varnothing n=1[an,bn]=矛盾故 x ∈ x\in x ( α n , β n ) ⋃ ( α n ’ , β n ′ ) (\alpha_n,\beta_n)\bigcup(\alpha_n^{’},\beta_{n}^{'}) (αn,βn)(αn,βn)即证为一覆盖

由有限覆盖定理得,存在N,使得

⋃ n = 1 N ( ( α n , β n ) ∪ ( α n ’ , β n ′ ) ) ⊃ [ a 1 , b 1 ] \bigcup_{n=1}^{N}((\alpha_n,\beta_n)\cup(\alpha_n^{’},\beta_n^{'}))\supset[a_1,b_1] n=1N((αn,βn)(αn,βn))[a1,b1]

⋃ n = 1 N ( ( α n , β n ) ∪ ( α n ’ , β n ′ ) ) \bigcup_{n=1}^{N}((\alpha_n,\beta_n)\cup(\alpha_n^{’},\beta_n^{'})) n=1N((αn,βn)(αn,βn))= ( a 1 − 1 , b 1 + 1 ) (a_1-1,b_1+1) (a11,b1+1) \ ⋂ n = 1 N [ a n , b n ] = ( a 1 − 1 , b 1 + 1 ) \bigcap_{n=1}^{N}[a_n,b_n]=(a_1-1,b_1+1) n=1N[an,bn]=(a11,b1+1) \ [ a N , b N ] [a_N,b_N] [aN,bN]

这就推出,当n>N时,[an,bn]是空集,这是不可能的(由区间套定理构造得 ∅ \varnothing 是无法满足条件的),矛盾,故有

⋂ n = 1 ∞ [ a n , b n ] ≠ ∅ \bigcap_{n=1}^{\infty}[a_n,b_n]\ne\varnothing n=1[an,bn]=

即存在r使

r ∈ ⋂ n = 1 ∞ [ a n , b n ] r\in\bigcap_{n=1}^{\infty}[a_n,b_n] rn=1[an,bn]

r的唯一性证明由区间套性质本身可推得,证毕⚡️

3 → 1 3\to1 31:证明在紧致性定理证明处早已证明

2 → 3 2\to3 23:证明: 由{[an,bn]}是一个闭区间套即 ∀ n ∈ Z + , 有 a 1 ≤ ⋯ ≤ a n + 1 ≤ b n + 1 ≤ ⋯ ≤ b 1 \forall n\in Z^+,有a_1\le\dots\le a_{n+1}\le b_{n+1}\le\dots\le b_1 nZ+,a1an+1bn+1b1

则易得{an}{bn}都有界,据致密性定理,存在各自的收敛子数列 { a n k } { b n k } \{a_{n_k}\}\{b_{n_k}\} {ank}{bnk}

lim ⁡ k → ∞ b n k = α \lim_{k\to\infty}b_{n_k}=\alpha limkbnk=α

[ a n k , b n k ] {[a_{n_k},b_{n_k}]} [ank,bnk]是一闭区间套则 lim ⁡ k → ∞ ( b n k − a n k ) = 0 \lim_{k\to \infty}(b_{n_k}-a_{n_k})=0 limk(bnkank)=0 lim ⁡ k → ∞ a n k = α \lim_{k\to\infty}a_{n_k}=\alpha limkank=α由数列的单调性及有界性易得 α ∈ [ a n , b n ] \alpha\in[a_n,b_n] α[an,bn]

下证唯一性:若存在另一数 β ∈ [ a n , b n ] \beta\in[a_n,b_n] β[an,bn] ∣ α − β ∣ < ∣ a n − b n ∣ 由 |\alpha-\beta|<|a_n-b_n|由 αβ<anbn lim ⁡ k → ∞ ( b n − a n ) = 0 \lim_{k\to \infty}(b_{n}-a_{n})=0 limk(bnan)=0 α = β \alpha=\beta α=β证毕⚡️

3 → 2 3\to2 32:证明在证明致密性定理时已经证明


  1. 来源于闭域套定理_百度百科 (baidu.com) ↩︎ ↩︎

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哈哈19

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值