力扣DAY60-61 | 热100 | 回溯:单词搜索、分割回文串

前言

中等 √ 继续回溯,不知咋地感觉这两题有点难度,是因为隔一天就手感生疏了吗?

单词搜索

我的题解

定义方向数组、二维访问数组。图搜索,向上下左右每个方向搜索,需要更新的信息:坐标、是否遍历过、搜索到的字母位置。剪枝条件:数组越界、超出单词长度、已搜到、位置已访问过。注意:起始位置不能从0,0开始,需要先遍历整个图找出单词首字母位置,存入队列,再遍历该队列进行搜索。

class Solution {
public:

    int m, n, l;
    bool ans = false;
    vector<vector<int>> dir = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
    vector<vector<bool>> visited;

    void findans(vector<vector<char>>& board, string word, int c, int r, int point){
        
        //数组越界、超出单词长度、不符合
        if (c < 0 || c >= m || r < 0 || r >= n || point >= l || ans == true || visited[c][r] == true)
            return;
        
        for (int i = 0; i < 4; i++){
            if (board[c][r] == word[point]){
                if (point == l-1) ans = true;
                int dc = dir[i][0];
                int dr = dir[i][1];
                visited[c][r] = true;
                findans(board, word, c + dc, r + dr, point + 1);
                visited[c][r] = false;
            }
        }
    }


    bool exist(vector<vector<char>>& board, string word) {
        m = board.size();
        n = board[0].size();
        l = word.size();
        queue<pair<int, int>> q;
        for (int i = 0; i < m; i++){
            for (int j = 0; j < n; j++){
                if (board[i][j] == word[0])
                    q.push({i, j});
            }
        }
        while (!q.empty() && ans == false){
            visited.resize(m, vector<bool>(n, false));
            findans(board, word, q.front().first, q.front().second, 0);
            q.pop();

        }
        return ans;
    }
};

官方题解

官解思路与笔者一致,不赘述,这里贴一个评论区的优化方法

第一个优化

比如示例 3,word=ABCB,其中字母 B 出现了 2 次,但 board 中只有 1 个字母 B,所以肯定搜不到 word,直接返回 false。

一般地,如果 word 的某个字母的出现次数,比 board 中的这个字母的出现次数还要多,可以直接返回 false。

第二个优化

设 word 的第一个字母在 board 中的出现了 x 次,word 的最后一个字母在 board 中的出现了 y 次。

如果 y<x,我们可以把 word 反转,相当于从 word 的最后一个字母开始搜索,这样更多的时候一开始就匹配失败,递归的总次数更少。

加上这两个优化,就可以击败接近 100% 了!

心得

本质是图搜索,知识点都是关联的,比较多边界条件要考虑,另外笔者的剪枝位置与官解不太一致,一个是函数开头,一个是循环里面下一层递归前,应该都是一样的,不过感觉可以的话尽量在下一层递归前剪枝好一点,这应该也是预剪枝和后剪枝的区别?节省时间和空间。

分割回文串

我的题解

遍历从上一刀(初始为0)到末尾的每个位置,如果为回文,加入子解集中,一直到上一刀到末尾为止,加入总解集中。双指针判断是否回文。

class Solution {
public:

    vector<vector<string>> ans;
    vector<string> pre;

    bool isPaindrome(string s, int begin, int end){
        while (begin < end){
            if (s[begin] == s[end]){
                begin ++;
                end --;
            }else{
                return false;
            }
        }
        return true;
    }

    void findans(string s, int point){
        if (point == s.size()){
            ans.push_back(pre);
        }

        for (int i = point; i < s.size(); i++){
            if (isPaindrome(s, point, i)){
                pre.push_back(s.substr(point, i+1-point));
                findans(s, i+1);
                pre.pop_back();
            }
        }
    }

    vector<vector<string>> partition(string s) {
        
        if (s.empty())
            return {};
        
        findans(s, 0);
        return ans;
    }
};

官方题解

官解与笔者思路大致一样,但是用了动态规划把每个子串是不是回文串预处理了出来,大大节省时间。

class Solution {
private:
    vector<vector<int>> f;
    vector<vector<string>> ret;
    vector<string> ans;
    int n;

public:
    void dfs(const string& s, int i) {
        if (i == n) {
            ret.push_back(ans);
            return;
        }
        for (int j = i; j < n; ++j) {
            if (f[i][j]) {
                ans.push_back(s.substr(i, j - i + 1));
                dfs(s, j + 1);
                ans.pop_back();
            }
        }
    }

    vector<vector<string>> partition(string s) {
        n = s.size();
        f.assign(n, vector<int>(n, true));

        for (int i = n - 1; i >= 0; --i) {
            for (int j = i + 1; j < n; ++j) {
                f[i][j] = (s[i] == s[j]) && f[i + 1][j - 1];
            }
        }

        dfs(s, 0);
        return ret;
    }
};

心得

果然一天不做就手生了,官解的动态规划解法认真学习,有点意思!

知识点

初始化二维数组 f.assign(n, vector<int>(n, true)); 

  1. vector<int>(n, true)​:

    • 创建一个大小为 n 的 vector<int>(整数向量)
    • 所有元素初始化为 true(注意:true 会被隐式转换为 int 类型的 1
  2. f.assign(n, ...)​:

    • 对向量 f 进行赋值操作
    • 将 f 设置为包含 n 个上述创建的 vector<int>(n, true)
    • 结果是创建一个 n × n 的二维向量,所有元素初始化为 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值