使用DeepSeek-Prover-V1.5解决数学问题

DeepSeek-Prover-V1.5-RL+RMaxTS是一个结合强化学习和搜索策略的自动定理证明系统。


1. 初等代数:二次方程求解

问题:解方程 x² - 5x + 6 = 0

操作步骤

  1. 将问题转换为Coq形式:
Theorem quadratic : exists x : Z, x^2 - 5*x + 6 = 0.
  1. 调用模型进行因式分解搜索:
deepseek-prover --problem "quadratic" --strategy rmaxts --max-depth 10
  1. 模型输出分解步骤:(x-2)(x-3)=0
  2. 验证解集:{2, 3}

2. 几何:勾股定理证明

问题:证明直角三角形的斜边平方等于两直角边平方和

操作步骤

  1. 形式化命题:
Theorem Pythagoras : forall a b c : nat, right_triangle a b c -> a^2 + b^2 = c^2.
  1. 启用几何推理模块:
from deepseek import Prover
prover = Prover(geometry_mode=True)
prover.prove("Pythagoras", strategy="RL+RMaxTS")
  1. 模型生成面积法证明过程

3. 数论:费马小定理

问题:证明若p是素数,a不被p整除,则a^(p-1) ≡ 1 mod p

操作步骤

  1. 输入形式化命题:
theorem fermat_little : ∀ p : ℕ, prime p → ∀ a : ℕ, ¬p ∣ a → a^(p-1) % p = 1 := by
  1. 设置数论专用策略集:
deepseek-prover --domain number_theory --timeout 600
  1. 模型应用群论和模运算进行证明

4. 微积分:导数计算

问题:求f(x) = x³·sin(x)的导数

操作步骤

  1. 使用符号计算接口:
from deepseek.calculus import Differentiator
diff = Differentiator()
expr = "x**3 * sin(x)"
result = diff.compute(expr, strategy="symbolic+rmaxts") 
  1. 模型自动应用乘积规则:
    输出:3x²sin(x) + x³cos(x)

5. 组合数学:排列计数

问题:计算10人排成圆形队列的不同排列数

操作步骤

  1. 形式化问题描述:
Lemma circular_perm : forall n : nat, n > 0 -> factorial(n-1) = circular_permutations(n).
  1. 启用组合推理模式:
deepseek-prover --domain combinatorics --strategy counting
  1. 模型输出通过固定位置消去旋转对称性的证明

6. 概率统计:期望计算

问题:计算二项分布B(n,p)的期望值

操作步骤

  1. 输入概率分布定义:
def binomial_expectation : 𝔼[X] = n * p := by
  1. 调用概率计算模块:
prover.set_context("probability")
prover.use_lemma("linearity_of_expectation")
  1. 模型通过指示变量分解完成证明

7. 拓扑学:连通性证明

问题:证明实数轴R在标准拓扑下是连通的

操作步骤

  1. 形式化拓扑定义:
Theorem R_connected : connected (Space.mk ℝ (metric_topology ℝ)).
  1. 启用拓扑策略库:
deepseek-prover --domain topology --strategy connectivity
  1. 模型应用区间套定理进行反证法

8. 逻辑:命题逻辑证明

问题:证明 (P→Q) ∧ (Q→R) ⇒ (P→R)

操作步骤

  1. 输入命题公式:
Lemma syllogism : forall P Q R : Prop, (P -> Q) /\ (Q -> R) -> (P -> R).
  1. 使用自然演绎策略:
prover.apply_tactic("natural_deduction")
prover.intro_hypotheses()
  1. 模型生成假设链式推理步骤

9. 线性代数:矩阵秩证明

问题:证明rank(A+B) ≤ rank(A) + rank(B)

操作步骤

  1. 形式化矩阵运算:
theorem rank_sum : ∀ A B : matrix, rank(A + B) ≤ rank(A) + rank(B) := by
  1. 加载线性代数知识库:
deepseek-prover --library linear_algebra.rank_properties
  1. 模型通过列空间包含关系进行证明

10. 微分方程:求解一阶线性ODE

问题:解方程 y’ + P(x)y = Q(x)

操作步骤

  1. 使用微分方程求解器:
from deepseek.ode import FirstOrderSolver
solver = FirstOrderSolver()
solution = solver.solve("dy/dx + P(x)y = Q(x)", method="integrating_factor")
  1. 模型自动推导积分因子:
    输出:y = e^{-∫P dx}[∫Qe^{∫P dx}dx + C]

关键技术点说明

  1. 领域适配:通过--domain参数指定数学领域,激活对应策略库
  2. 混合策略:RL策略选择证明方向,RMaxTS控制搜索宽度
  3. 符号计算:内置SymPy集成处理代数运算
  4. 形式化验证:输出结果可导入Coq/Lean进行机器验证
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值