目录
1.学前需要了解知识点
- 最小项的定义
- 最小项的表示方法
- 最小项的相邻性
最小项的定义:一个函数的某个乘积项包含了函数的全部变量,其中每个变量都以原变量或反变量的形式出现,且仅出现一次,则这个乘积项称为该函数的一个标准积项,通常称为最小项。
最小项的表示方法:通常用
来表示最小项。
下标i的确定方式:把最小项中原变量记为1,反变量记为0,当变量顺序确定后,可以按顺序排列成一个二进制数,则与这个二进制数相对应的十进制数,就是这个最小项的下标i。
例1:
函数L(A,B,C)中有3个变量,他们的最小项是:
如果把原变量记为1,反变量记为0:
以上就是下标i的确认方式。
既然i已经确认,也就是说(m0、m1...m7)可以记成:
最小项的的相邻性:任何两个最小项如果他们只有一个因子不同,其余因子都相同,则称这两个最小项为相邻最小项。
例如:m0和m1具有相邻性,m1和m2却没有,因为他们有两个不同的因子;m3和m4也不相邻,但是m3和m2相邻。
相邻的两个最小项之和可以合并一项,消去一个变量。如:
到此,已经具备接下来学习卡诺图的准备知识点,接下来看看怎么画卡诺图以及卡诺图化简法。