目录
最简与—或逻辑式:包含的乘积已经最小,每个因子也已经最小,称为最简与—或逻辑式。
一般化为逻辑函数的化简包括三种方式,即公式法化简、卡诺图化简法以及奎恩-麦克拉斯化简法(Q-M法),如下图所示:

本篇文章介绍的时公式法化简和卡诺图化简法。
1 公式化简法
反复利用基本公式和常用公式法来去除多余的乘积项和多余的因子。称为公式法化简。
1.1 并项法
并项法就是将两个逻辑相邻的项消去一个变量,合成一个项。
下面举一些利用并项法的例子。
(1)Y=AB'+ABC'+ABCD'+ABCD
化简过程如下所示:
(2)Y=A’B'C'+A'B'C+A'BC'+A'BC
化简过程如下所示:
(3)Y=A'(BCD)'+A'BCD
化简过程如下所示:
(4)Y=ABC'+ABD'+ABCD
化简过程如下所示:
(5)Y=AB'C'+A'C'+BC'
化简过程如下所示:
1.2 吸收法
吸收法是利用吸收律来简化逻辑表达式,例如:1+A=1、AB+A=A等。
下面举一些利用吸收法的例子。
(1)Y=A+BC+A'B+BC‘
化简过程如下所示:
(2)Y=AB+ABC'+ABCD+ABCD'+ABE+AB(C'+D'+E')'
化简过程如下所示:
(3)Y=A+AB+AC+ACD+ABD+BD
化简过程如下所示:
(4)Y=A'B+A'BE+A'B(CD')+A'B(C'D)'
化简过程如下所示:
(5) Y=A+BC+ABCD