DeepSeek-VL2 是由 DeepSeek 团队开发的一款先进的视觉语言模型,采用了混合专家(MoE)架构,旨在提升多模态理解能力。该模型包括三个版本:DeepSeek-VL2-Tiny、DeepSeek-VL2-Small 和 DeepSeek-VL2。每个版本具有不同的模型规模和计算需求,运行这些模型时对硬件的要求也有所不同,尤其是在显卡选择上。本文将介绍 DeepSeek-VL2 的三个版本,并分析其在英伟达消费级显卡上的运行需求,帮助开发者根据自己的硬件配置选择合适的显卡。
DeepSeek-VL2 模型概述
DeepSeek-VL2 是基于深度学习的视觉语言模型,其主要特点如下:
混合专家架构:DeepSeek-VL2 采用了混合专家(MoE)架构,这使得模型在参数规模扩展的同时能够有效控制计算成本。通过分配专家来处理不同的任务,可以提高模型的计算效率。
动态高分辨率视觉编码:该模型引入了动态平铺视觉编码策略,能够处理不同纵横比的高分辨率图像,提升视觉任务中的表现,尤其是在视觉定位、文档分析等任务中。
数据扩展与训练微调:DeepSeek-VL2 相较于前代模型,增加了更多的训练数据,并引入了新的能力,比如梗图理解、视觉定位和视觉故事生成等。
三个版本的显卡要求分析
DeepSeek-VL2 的三个版本分别为 DeepSeek-VL2-Tiny、DeepSeek-VL2-Small