9:极大似然估计

极大似然估计,也叫最大似然估计,是参数估计的一种方法,一般用来推测数据分布函数相关参数。

极大似然估计步骤:

1.先假设数据属于某一分布(正太分布、泊松分布等),得到概率分布函数

2.对概率分布函数求导,另导数等于0(若有多处为0,选另样本点概率最大的参数),根据样本点数据,求参数值

为什么叫似然:对于无法穷举的问题,可根据样本数据估计实际分布,不是真实但近似真实

 

以下参考wiki的解释:

统计学中,最大似然估计(英语:maximum likelihood estimation,缩写为MLE),也称最大概似估计,是用来估计一个概率模型的参数的一种方法。

 

目录

预备知识[编辑]

下边的讨论要求读者熟悉概率论中的基本定义,如概率分布概率密度函数随机变量数学期望等。同时,还要求读者熟悉连续实函数的基本技巧,比如使用微分来求一个函数的极值(即极大值极小值)。

最大似然估计的原理[编辑]

给定一个概率分布{\displaystyle D}D,已知其概率密度函数(连续分布)或概率质量函数(离散分布)为{\displaystyle f_{D}}f_D,以及一个分布参数{\displaystyle \theta }\theta,我们可以从这个分布中抽出一个具有{\displaystyle n}n个值的采样{\displaystyle X_{1},X_{2},\ldots ,X_{n}}X_1, X_2,\ldots, X_n,利用{\displaystyle f_{D}}f_D计算出其似然函数

{\displaystyle {\mbox{lik}}(\theta \mid x_{1},\dots ,x_{n})=f_{\theta }(x_{1},\dots ,x_{n}).}{\displaystyle {\mbox{lik}}(\theta \mid x_{1},\dots ,x_{n})=f_{\theta }(x_{1},\dots ,x_{n}).}

若{\displaystyle D}D是离散分布,{\displaystyle f_{\theta }}{\displaystyle f_{\theta }}即是在参数为{\displaystyle \theta }\theta时观测到这一采样的概率。若其是连续分布,{\displaystyle f_{\theta }}{\displaystyle f_{\theta }}则为{\displaystyle X_{1},X_{2},\ldots ,X_{n}}X_1, X_2,\ldots, X_n联合分布的概率密度函数在观测值处的取值。一旦我们获得{\displaystyle X_{1},X_{2},\ldots ,X_{n}}X_1, X_2,\ldots, X_n,我们就能求得一个关于{\displaystyle \theta }\theta的估计。最大似然估计会寻找关于{\displaystyle \theta }\theta的最可能的值(即,在所有可能的{\displaystyle \theta }\theta取值中,寻找一个值使这个采样的“可能性”最大化)。从数学上来说,我们可以在{\displaystyle \theta }\theta的所有可能取值中寻找一个值使得似然函数取到最大值。这个使可能性最大的{\displaystyle {\widehat {\theta }}}\widehat{\theta}值即称为{\displaystyle \theta }\theta最大似然估计。由定义,最大似然估计是样本的函数。

注意[编辑]

  • 这里的似然函数是指{\displaystyle x_{1},x_{2},\ldots ,x_{n}}x_1,x_2,\ldots,x_n不变时,关于{\displaystyle \theta }\theta的一个函数。
  • 最大似然估计不一定存在,也不一定唯一。

例子[编辑]

离散分布,离散有限参数空间[编辑]

考虑一个抛硬币的例子。假设这个硬币正面跟反面轻重不同。我们把这个硬币抛80次(即,我们获取一个采样{\displaystyle x_{1}={\mbox{H}},x_{2}={\mbox{T}},\ldots ,x_{80}={\mbox{T}}}x_1=\mbox{H}, x_2=\mbox{T}, \ldots, x_{80}=\mbox{T}并把正面的次数记下来,正面记为H,反面记为T)。并把抛出一个正面的概率记为{\displaystyle p}p,抛出一个反面的概率记为{\displaystyle 1-p}1-p(因此,这里的{\displaystyle p}p即相当于上边的{\displaystyle \theta }\theta)。假设我们抛出了49个正面,31个反面,即49次H,31次T。假设这个硬币是我们从一个装了三个硬币的盒子里头取出的。这三个硬币抛出正面的概率分别为{\displaystyle p=1/3}p=1/3, {\displaystyle p=1/2}p=1/2, {\displaystyle p=2/3}p=2/3.这些硬币没有标记,所以我们无法知道哪个是哪个。使用最大似然估计,基于二项分布中的概率质量函数公式,通过这些试验数据(即采样数据),我们可以计算出哪个硬币的可能性最大。这个似然函数取以下三个值中的一个:

{\displaystyle {\begin{matrix}\mathbb {P} ({\mbox{H=49, T=31 }}\mid p=1/3)&=&{\binom {80}{49}}(1/3)^{49}(1-1/3)^{31}\approx 0.000\\&&\\\mathbb {P} ({\mbox{H=49, T=31 }}\mid p=1/2)&=&{\binom {80}{49}}(1/2)^{49}(1-1/2)^{31}\approx 0.012\\&&\\\mathbb {P} ({\mbox{H=49, T=31 }}\mid p=2/3)&=&{\binom {80}{49}}(2/3)^{49}(1-2/3)^{31}\approx 0.054\\\end{matrix}}}\begin{matrix} \mathbb{P}(\mbox{H=49, T=31 }\mid p=1/3) & = & \binom{80}{49}(1/3)^{49}(1-1/3)^{31} \approx 0.000 \\ &&\\ \mathbb{P}(\mbox{H=49, T=31 }\mid p=1/2) & = & \binom{80}{49}(1/2)^{49}(1-1/2)^{31} \approx 0.012 \\ &&\\ \mathbb{P}(\mbox{H=49, T=31 }\mid p=2/3) & = & \binom{80}{49}(2/3)^{49}(1-2/3)^{31} \approx 0.054 \\ \end{matrix}

我们可以看到当{\displaystyle {\widehat {p}}=2/3}\widehat{p}=2/3时,似然函数取得最大值。这就是{\displaystyle p}p的最大似然估计。

离散分布,连续参数空间[编辑]

现在假设例子1中的盒子中有无数个硬币,对于{\displaystyle 0\leq p\leq 1}0\leq p\leq 1中的任何一个{\displaystyle p}p, 都有一个抛出正面概率为{\displaystyle p}p的硬币对应,我们来求其似然函数的最大值:

{\displaystyle {\begin{matrix}{\mbox{lik}}(\theta )&=&f_{D}({\mbox{H=49,T=80-49}}\mid p)={\binom {80}{49}}p^{49}(1-p)^{31}\\\end{matrix}}}\begin{matrix} \mbox{lik}(\theta) & = & f_D(\mbox{H=49,T=80-49}\mid p) = \binom{80}{49} p^{49}(1-p)^{31} \\ \end{matrix}

其中{\displaystyle 0\leq p\leq 1}0\leq p\leq 1. 我们可以使用微分法来求最值。方程两边同时对{\displaystyle p}p微分,并使其为零。

{\displaystyle {\begin{matrix}0&=&{\frac {d}{dp}}\left({\binom {80}{49}}p^{49}(1-p)^{31}\right)\\&&\\&\propto &49p^{48}(1-p)^{31}-31p^{49}(1-p)^{30}\\&&\\&=&p^{48}(1-p)^{30}\left[49(1-p)-31p\right]\\\end{matrix}}}\begin{matrix} 0 & = & \frac{d}{dp} \left( \binom{80}{49} p^{49}(1-p)^{31} \right) \\   &   & \\   & \propto & 49p^{48}(1-p)^{31} - 31p^{49}(1-p)^{30} \\   &   & \\   & = & p^{48}(1-p)^{30}\left[ 49(1-p) - 31p \right] \\ \end{matrix}

在不同比例参数值下一个二项式过程的可能性曲线t = 3, n = 10;其最大似然估计值发生在其众数并在曲线的最大值处。

其解为{\displaystyle p=0}p=0, {\displaystyle p=1}p=1,以及{\displaystyle p=49/80}p=49/80.使可能性最大的解显然是{\displaystyle p=49/80}p=49/80(因为{\displaystyle p=0}p=0和{\displaystyle p=1}p=1这两个解会使可能性为零)。因此我们说最大似然估计值为{\displaystyle {\widehat {p}}=49/80}\widehat{p}=49/80.

这个结果很容易一般化。只需要用一个字母{\displaystyle t}t代替49用以表达伯努利试验中的被观察数据(即样本)的“成功”次数,用另一个字母{\displaystyle n}n代表伯努利试验的次数即可。使用完全同样的方法即可以得到最大似然估计值:

{\displaystyle {\widehat {p}}={\frac {t}{n}}}\widehat{p}=\frac{t}{n}

对于任何成功次数为{\displaystyle t}t,试验总数为{\displaystyle n}n的伯努利试验。

连续分布,连续参数空间[编辑]

最常见的连续概率分布正态分布,其概率密度函数如下:

{\displaystyle f(x\mid \mu ,\sigma ^{2})={\frac {1}{\sqrt {2\pi \sigma ^{2}}}}e^{-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}}}f(x\mid \mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}

现在有{\displaystyle n}n个正态随机变量的采样点,要求的是一个这样的正态分布,这些采样点分布到这个正态分布可能性最大(也就是概率密度积最大,每个点更靠近中心点),其{\displaystyle n}n个正态随机变量的采样的对应密度函数(假设其独立并服从同一分布)为:

{\displaystyle f(x_{1},\ldots ,x_{n}\mid \mu ,\sigma ^{2})=\left({\frac {1}{2\pi \sigma ^{2}}}\right)^{\frac {n}{2}}e^{-{\frac {\sum _{i=1}^{n}(x_{i}-\mu )^{2}}{2\sigma ^{2}}}}}f(x_1,\ldots,x_n \mid \mu,\sigma^2) = \left( \frac{1}{2\pi\sigma^2} \right)^\frac{n}{2} e^{-\frac{ \sum_{i=1}^{n}(x_i-\mu)^2}{2\sigma^2}}

或:

{\displaystyle f(x_{1},\ldots ,x_{n}\mid \mu ,\sigma ^{2})=\left({\frac {1}{2\pi \sigma ^{2}}}\right)^{n/2}\exp \left(-{\frac {\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}+n({\bar {x}}-\mu )^{2}}{2\sigma ^{2}}}\right)}f(x_1,\ldots,x_n \mid \mu,\sigma^2) = \left( \frac{1}{2\pi\sigma^2} \right)^{n/2} \exp\left(-\frac{ \sum_{i=1}^{n}(x_i-\bar{x})^2+n(\bar{x}-\mu)^2}{2\sigma^2}\right),

这个分布有两个参数:{\displaystyle \mu ,\sigma ^{2}}\mu,\sigma^2.有人可能会担心两个参数与上边的讨论的例子不同,上边的例子都只是在一个参数上对可能性进行最大化。实际上,在两个参数上的求最大值的方法也差不多:只需要分别把可能性{\displaystyle {\mbox{lik}}(\mu ,\sigma )=f(x_{1},,\ldots ,x_{n}\mid \mu ,\sigma ^{2})}\mbox{lik}(\mu,\sigma) = f(x_1,,\ldots,x_n \mid \mu, \sigma^2)在两个参数上最大化即可。当然这比一个参数麻烦一些,但是一点也不复杂。使用上边例子同样的符号,我们有{\displaystyle \theta =(\mu ,\sigma ^{2})}\theta=(\mu,\sigma^2).

最大化一个似然函数同最大化它的自然对数是等价的。因为自然对数log是一个连续且在似然函数的值域严格递增的上凸函数。[注意:可能性函数(似然函数)的自然对数跟信息熵以及Fisher信息联系紧密。]求对数通常能够一定程度上简化运算,比如在这个例子中可以看到:

{\displaystyle {\begin{matrix}0&=&{\frac {\partial }{\partial \mu }}\log \left(\left({\frac {1}{2\pi \sigma ^{2}}}\right)^{\frac {n}{2}}e^{-{\frac {\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}+n({\bar {x}}-\mu )^{2}}{2\sigma ^{2}}}}\right)\\&=&{\frac {\partial }{\partial \mu }}\left(\log \left({\frac {1}{2\pi \sigma ^{2}}}\right)^{\frac {n}{2}}-{\frac {\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}+n({\bar {x}}-\mu )^{2}}{2\sigma ^{2}}}\right)\\&=&0-{\frac {-2n({\bar {x}}-\mu )}{2\sigma ^{2}}}\\\end{matrix}}}\begin{matrix} 0 & = & \frac{\partial}{\partial \mu} \log \left( \left( \frac{1}{2\pi\sigma^2} \right)^\frac{n}{2} e^{-\frac{ \sum_{i=1}^{n}(x_i-\bar{x})^2+n(\bar{x}-\mu)^2}{2\sigma^2}} \right) \\   & = & \frac{\partial}{\partial \mu} \left( \log\left( \frac{1}{2\pi\sigma^2} \right)^\frac{n}{2} - \frac{ \sum_{i=1}^{n}(x_i-\bar{x})^2+n(\bar{x}-\mu)^2}{2\sigma^2} \right) \\   & = & 0 - \frac{-2n(\bar{x}-\mu)}{2\sigma^2} \\ \end{matrix}

这个方程的解是{\displaystyle {\widehat {\mu }}={\bar {x}}=\sum _{i=1}^{n}x_{i}/n}\widehat{\mu} = \bar{x} = \sum^{n}_{i=1}x_i/n.这的确是这个函数的最大值,因为它是{\displaystyle \mu }\mu里头惟一的一阶导数等于零的点并且二阶导数严格小于零。

同理,我们对{\displaystyle \sigma }\sigma求导,并使其为零。

{\displaystyle {\begin{matrix}0&=&{\frac {\partial }{\partial \sigma }}\log \left(\left({\frac {1}{2\pi \sigma ^{2}}}\right)^{\frac {n}{2}}e^{-{\frac {\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}+n({\bar {x}}-\mu )^{2}}{2\sigma ^{2}}}}\right)\\&=&{\frac {\partial }{\partial \sigma }}\left({\frac {n}{2}}\log \left({\frac {1}{2\pi \sigma ^{2}}}\right)-{\frac {\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}+n({\bar {x}}-\mu )^{2}}{2\sigma ^{2}}}\right)\\&=&-{\frac {n}{\sigma }}+{\frac {\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}+n({\bar {x}}-\mu )^{2}}{\sigma ^{3}}}\\\end{matrix}}}\begin{matrix} 0 & = & \frac{\partial}{\partial \sigma} \log \left( \left( \frac{1}{2\pi\sigma^2} \right)^\frac{n}{2} e^{-\frac{ \sum_{i=1}^{n}(x_i-\bar{x})^2+n(\bar{x}-\mu)^2}{2\sigma^2}} \right) \\   & = & \frac{\partial}{\partial \sigma} \left( \frac{n}{2}\log\left( \frac{1}{2\pi\sigma^2} \right) - \frac{ \sum_{i=1}^{n}(x_i-\bar{x})^2+n(\bar{x}-\mu)^2}{2\sigma^2} \right) \\   & = & -\frac{n}{\sigma} + \frac{ \sum_{i=1}^{n}(x_i-\bar{x})^2+n(\bar{x}-\mu)^2}{\sigma^3} \\ \end{matrix}

这个方程的解是{\displaystyle {\widehat {\sigma }}^{2}=\sum _{i=1}^{n}(x_{i}-{\widehat {\mu }})^{2}/n}\widehat{\sigma}^2 = \sum_{i=1}^n(x_i-\widehat{\mu})^2/n.

因此,其关于{\displaystyle \theta =(\mu ,\sigma ^{2})}\theta=(\mu,\sigma^2)最大似然估计为:

{\displaystyle {\widehat {\theta }}=({\widehat {\mu }},{\widehat {\sigma }}^{2})=({\bar {x}},\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}/n)}\widehat{\theta}=(\widehat{\mu},\widehat{\sigma}^2) = (\bar{x},\sum_{i=1}^n(x_i-\bar{x})^2/n).

性质[编辑]

泛函不变性(Functional invariance)[编辑]

如果{\displaystyle {\widehat {\theta }}}\widehat{\theta}是{\displaystyle \theta }\theta的一个最大似然估计,那么{\displaystyle \alpha =g(\theta )}\alpha = g(\theta)的最大似然估计是{\displaystyle {\widehat {\alpha }}=g({\widehat {\theta }})}\widehat{\alpha} = g(\widehat{\theta}).函数g无需是一个一一映射。请参见George Casella与Roger L. Berger所著的Statistical Inference定理Theorem 7.2.10的证明。(中国大陆出版的大部分教材上也可以找到这个证明。)

渐近线行为[编辑]

最大似然估计函数在采样样本总数趋于无穷的时候达到最小方差(其证明可见于Cramer-Rao lower bound)。当最大似然估计非偏时,等价的,在极限的情况下我们可以称其有最小的均方差。 对于独立的观察来说,最大似然估计函数经常趋于正态分布

偏差[编辑]

最大似然估计的偏差是非常重要的。考虑这样一个例子,标有1nn张票放在一个盒子中。从盒子中随机抽取票。如果n是未知的话,那么n的最大似然估计值就是抽出的票上标有的n,尽管其期望值的只有{\displaystyle (n+1)/2}(n+1)/2.为了估计出最高的n值,我们能确定的只能是n值不小于抽出来的票上的值。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值