20.推荐召回算法之k近邻算法:局部敏感哈希、kdtree、balltree算法分析与比较

本文探讨推荐系统中召回与排序的挑战,介绍基于类别、embedding向量的召回方法,及局部敏感哈希(LSH)、kdtree、balltree等算法在高维数据检索的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

推荐系统里面临的比较大的问题是1.召回 2.排序。召回是从百万、千万甚至上亿的候选中找到用户可能喜欢的商品(可以不那么精细),排序一般是设计怎样排序才能使点击率更高。

考虑一个新闻推荐场景,假设一个用户曾经看过美妆、育儿、明星类的新闻,怎样在ta下一刷中把用户可能感兴趣的找到并推给用户呢?

比较简单的做法是,将每条新闻分一个类(如体育、美妆、育儿、八卦、明星、电影),根据分类将候选召回再排序。

比较复杂一点的做法是,通过用户看过的新闻得到一个embedding向量,然后根据这个向量去做召回,局部敏感哈希、kdtree、balltree算法就用在这里,下面会逐一介绍。

1.局部敏感哈希(Locality Sensitive Hashing,LSH):总体思想就是降低维度,同时保留向量在空间上的相似度(就是两个距离很近的向量,LSH之后也不会很远)

                                                                       

                                                               局部敏感哈希示意图(from: Piotr Indyk)

2.kdtree

k-d树是每个节点都为k维点的二叉树。所有非叶子节点可以视作用一个超平面把空间分割成两个半空间。节点左边的子树代表在超平面左边的点,节点右边的子树代表在超平面右边的点。选择超平面的方法如下:每个节点都与k维中垂直于超平面的那一维有关。因此,如果选择按照x轴划分,所有x值小于指定值的节点都会出现在左子树,所有x值大于指定值的节点都会出现在右子树。这样,超平面可以用该x值来确定,其法线为x轴的单位向量

创建:

有很多种方法可以选择轴垂直分割面( axis-aligned splitting planes ),所以有很多种创建k-d树的方法。 最典型的方法如下:

  • 随着树的深度轮流选择轴当作分割面。(例如:在三维空间中根节点是 x 轴垂直分割面,其子节点皆为 y 轴垂直分割面,其孙节点皆为 z 轴垂直分割面,其曾孙节点则皆为 x 轴垂直分割面,依此类推。)
  • 点由垂直分割面之轴座标的中位数区分并放入子树

这个方法产生一个平衡的k-d树。每个叶节点的高度都十分接近。然而,平衡的树不一定对每个应用都是最佳的。

kd树在20维以内最佳,对高维不友好

3.ball-tree(转自知乎)

为了解决kdtree在高维上效率低下的问题,因此引入了ball-tree。

KD树在搜索路径优化时使用的是两点之间的距离来判断,而球树使用的是两边之和与第三边大小来判断,即 |x+y|\leq|x|+|y|

以下图为例搜索点 q 的半径为 r 内的最近邻,即满足 ||q-x||\leq r

1. 从根节点 q 开始从上至下递归遍历每个可能包含最终近邻的子空间 p_i

2. 如果子空间的半径 radius{(p_i)}r 之和小于 p_i 中心点 center(p_i) 到目标点 q 的距离,即 (radius(p_i)+r)\leq ||center(p_i)-q|| ,接着在满足这样条件的子空间样本点内递归搜索满足 ||q-x||\leq r 的点就是我们想要的最近邻点了。换句简单的话来说,对于目标空间 (q, r) ,所有被该超球体截断的子超球体内的所有子空间都将被遍历搜索。

3. 由于子超球体 abq 所截,而对于 ab 内的子空间, d,hf 又被 q 所截,所以接下来就会在 d,h,f 内进行线性搜索。诸如 c,e,g 这些距离太远的子空间将被舍去。最后 [x_4,x_7] 就是最终得到的最近邻。

参考文献:

Mohamad Dolatshah, Ali Hadian, Behrouz Minaei-Bidgoli, "Ball*-tree: Efficient spatial indexing for constrained nearest-neighbor search in metric spaces", ArXiv e-prints, Nov 2015.


 

<think>好的,我现在需要处理用户关于基于GBDT的指纹识别算法设计性能评估的问题。首先,我需要回忆GBDT的基本原理,以及它在分类回归任务中的应用。GBDT属于集成学习方法,通过梯度提升决策树的结合来逐步减少残差,提升模型性能。 接下来,用户的问题涉及指纹识别,这通常属于模式识别或生物特征识别的领域。指纹识别流程一般包括图像预处理、特征提取、特征匹配等步骤。根据用户提供的引用内容,特征匹配算法如Brute Force Matching、KD Tree Matching等被提及,但用户希望结合GBDT来进行设计。 首先,我需要确定如何将GBDT应用于指纹识别。可能的思路是将指纹的特征向量作为输入,使用GBDT进行分类或匹配。例如,将提取的指纹特征作为特征,每个样本对应一个类别(即不同的指纹),通过训练GBDT模型来判断输入特征是否属于某个特定指纹。 设计步骤方面,可能需要包括数据预处理、特征工程、模型训练、以及性能评估指标。数据预处理可能涉及图像去噪、增强,然后使用如dHash(差异哈希)生成图像指纹,如引用[3]提到的。特征提取可能需要更复杂的特征,比如细节点特征(minutiae)或纹理特征,这些特征需要转换为数值型向量供GBDT处理。 在模型设计阶段,需要考虑GBDT的参数,如树的数量、深度、学习率等。同时,可能需要对比其他算法如随机森林、支持向量机等的性能。性能评估指标通常包括准确率、召回率、F1分数,以及ROC曲线下面积(AUC)等。 需要验证用户提供的引用内容是否相关。引用[1]提到特征匹配算法,引用[2]解释GBDT原理,引用[3]涉及图像哈希方法。因此,在回答中需要合理引用这些内容,例如在特征提取部分提到dHash,或者在模型训练部分引用GBDT的梯度提升机制。 还需要考虑指纹识别中的挑战,如高维特征、类内变化(同一指纹的不同采集可能差异大)、类间相似性(不同指纹可能局部相似)。GBDT能否处理这些问题?例如,GBDT对特征缩放不敏感,能自动处理特征交互,可能适合高维数据,但需要注意过拟合问题。 最后,性能评估部分需要设计实验,比较不同参数下的模型表现,可能还需要进行交叉验证,并其他方法对比,如引用[1]中的特征匹配算法,以展示GBDT的优势或适用场景。 总结下来,回答的结构应包括:算法设计步骤(数据预处理、特征工程、模型构建)、性能评估指标方法、可能的问题优化策略,以及相关引用。同时,生成的问题需要围绕GBDT在指纹识别中的具体应用、优化方法、对比实验设计等方面展开。</think>### 基于GBDT的指纹识别算法设计性能评测 #### 1. 算法设计方法 **(1)数据预处理特征提取** 指纹识别首先需通过图像处理技术提取稳定的特征。例如,使用图像哈希法(如$dHash$)生成指纹图像的差异哈希值[^3],或提取细节点特征(如端点、分叉点)的坐标、方向等。特征需转化为数值向量,如: $$ \mathbf{x} = [x_1, x_2, \dots, x_n] \quad \text{(如哈希码、纹理描述子、几何关系等)} $$ **(2)GBDT模型构建** GBDT通过多棵决策树迭代优化损失函数。在指纹识别中,通常将其用于分类任务(判断指纹是否匹配)或回归任务(计算匹配相似度)。 - **输入特征**:提取的指纹特征向量$\mathbf{x}$ - **损失函数**:分类任务常用对数损失,回归任务用均方误差。Friedman提出的梯度提升方法通过负梯度拟合基学习器[^2],例如: $$ r_{i} = -\frac{\partial L(y_i, F(\mathbf{x}_i))}{\partial F(\mathbf{x}_i)} \quad \text{(第$i$个样本的残差)} $$ **(3)训练优化** - **参数设置**:树的数量(`n_estimators`)、学习率(`learning_rate`)、树深度(`max_depth`) - **特征重要性分析**:GBDT可输出特征重要性,帮助优化特征提取步骤。 #### 2. 性能评估方法 **(1)评估指标** - **分类任务**:准确率、精确率、召回率、F1值、AUC-ROC - **回归任务**:均方误差(MSE)、皮尔逊相关系数 - **计算效率**:训练时间、匹配响应时间 **(2)对比实验设计** - **基准算法**:传统特征匹配方法(如Brute Force Matching[^1])或随机森林、SVM对比 - **数据集划分**:交叉验证(如K-Fold)确保结果稳定性 **(3)鲁棒性测试** - **噪声干扰**:在指纹图像中添加高斯噪声,测试模型鲁棒性 - **旋转/平移**:模拟采集时的角度偏移,验证特征不变性 #### 3. 关键问题优化方向 - **特征维度高**:可通过PCA或GBDT内置的特征重要性进行降维 - **类别不平衡**:采用加权损失函数或过采样技术(如SMOTE) - **过拟合**:限制树深度、增加正则化项(如L2惩罚) #### 4. 实际应用示例 ```python from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import train_test_split # 假设X为指纹特征矩阵,y为标签(0/1表示不匹配/匹配) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) # 训练GBDT模型 gbdt = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=3) gbdt.fit(X_train, y_train) # 评估性能 print("准确率:", gbdt.score(X_test, y_test)) ``` ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值