15.xgboost步长如何设定

xgboost的步长即是parameter里的eta(learning rate),官方对它的定义如下:

eta [default=0.3, alias: learning_rate]

  • Step size shrinkage used in update to prevents overfitting. After each boosting step, we can directly get the weights of new features, and eta shrinks the feature weights to make the boosting process more conservative.
  • range: [0,1]

1.有同学会奇怪为什么有new feature一说,feature不是训练集里面早就定好的吗?我的理解是这个feature是指每一轮迭代的迭代器,记得我们最后的output = 参数1*迭代器1+参数2*迭代器2+········,训练集里所谓的feature在此时不直接参与输出计算,而上面段落描述的feature指的就是迭代器,所以有new feature一说(xgboos训练方式复习一下,下一个迭代器是在上一个迭代器基础上得出的,依次类推)。

2.那么xgboost里面的eta是什么?eta是用来约束迭代器前的参数,eta是直接在参数前加的一个权重,使得参数变小,那么一个特征的影响也不至于过高,防止过拟合

举一个例子

比如第一棵树预测值为3.9,label为4.0,若eta为0.1,那么第二棵树训练的残差为4.0-3.9*0.1=3.61,残差有点大,还需要接着学习

若eta为0.99,那么第二棵树训练的残差为4.0-3.9*0.9=0.139,残差比较小,虽然还需要接着学习但是可以遇见的是很快就会收敛

可见eta越小,迭代器越多,反之越少,而少的迭代器容易过拟合,迭代器多一些泛化能力更强

3.eta越大训练越快,eta越小训练越慢但是容易达到最优解。由2可得

因此eta越小越容易达到最优解,但是eta小也会带来迭代器过多的问题(多了计算量大,对资源要求高),因此设置eta要和迭代器个数相权衡,一般设置个稍微大点的值(0.1~0.2),再根据迭代器情况逐步降低eta,降低到指标和迭代器个数都能接受的时候。

### XGBoost 参数配置指南 #### 1. 基础参数设定 对于初学者来说,理解并合理设置XGBoost的基础参数至关重要。这些参数直接影响模型的表现和效率。 - `objective`:定义学习任务的目标函数。常见的目标有二元分类(`binary:logistic`)、多元分类(`multi:softmax`, `multi:softprob`)以及回归(`reg:squarederror`)等[^1]。 - `eval_metric`:评价指标的选择应与目标任务相匹配。例如,在分类问题中可以选择`auc`(AUC ROC),而在回归问题里可以采用`rmse`(均方根误差)。 ```python import xgboost as xgb params = { 'objective': 'binary:logistic', 'eval_metric': 'auc' } ``` #### 2. 提升树结构控制 为了防止过拟合,需要适当调节影响决策树生长的参数: - `max_depth`:限制每棵树的最大深度,默认值为6。较小的数值有助于简化模型,避免过度拟合训练数据[^4]。 - `min_child_weight`:节点分裂所需的最小样本权重总和。增加此值可使算法更倾向于保守地创建分支,从而降低过拟合风险[^3]。 ```python params.update({ 'max_depth': 5, 'min_child_weight': 1 }) ``` #### 3. 正则化选项 引入正则化可以帮助提高泛化能力,减少过拟合现象的发生。 - `lambda` 和 `alpha`:分别对应L2和L1正则化的强度系数。两者都设为正值能够有效抑制复杂度较高的模型倾向。 ```python params.update({ 'lambda': 1, 'alpha': 0 }) ``` #### 4. 学习速率调整 通过改变每次迭代的学习步长来平衡收敛速度与最终精度之间的关系。 - `eta` 或者称为 learning rate (`learning_rate`) :通常取值范围在(0,1]之间。较低的学习率意味着更加稳健但较慢的收敛过程;反之,则可能导致不稳定的结果甚至发散。 ```python params['learning_rate'] = 0.1 ``` #### 5. GPU 加速支持 当面对大规模数据集时,启用GPU加速能显著加快运算速度。确保硬件兼容的前提下,只需简单修改几个标志位即可开启这项特性[^2]。 ```python # 启用GPU模式 params['tree_method'] = 'gpu_hist' # 使用基于直方图的GPU算法 params['predictor'] = 'gpu_predictor'# 预测阶段也利用GPU资源 ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值