剪映怎么去除杂音保留人声?一分钟告诉你!

本文介绍了三种技术方法来去除视频中的杂音:剪映的降噪功能、野葱视频转换器的人声提取以及Audacity的专业降噪。这些工具能帮助提高音频质量,使音频文件更清晰。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

由于周围环境嘈杂,或者录音设备的质量问题,我们在录制视频的时候会不可避免录到杂音,去除杂音保留人声能够使音频文件更加清晰、干净,下面就向大家介绍如何利用剪映做到去除杂音,同时再提供其他两种简便的方法。

方法一:使用剪映降噪功能

1、进入剪映主页,打开【开始创作】。

2、导入视频后,点击下方【剪辑】。

3、进入【剪辑】界面,点击【降噪】。

4、点击降噪右侧的开关按钮,开启降噪即可。

方法二:使用野葱视频转换器中的人声提取功能

1、打开软件,选择”人声分离“功能。

2、点击打开文件或直接拖拽文件至软件内添加,均可以批量添加。

3、添加成功后,根据个人需求设置音频格式等相关参数。

4、选择提取模式,“人声提取”、“伴奏提取”、“全部提取”共三种模式可选。

5、设置输出文件夹,点击“开始提取”或者“全部开始”,等待 “转换成功”提示即可。

6、点击 “已完成”,即可查看转换完成的音频。

方法三:使用专业性软件Audacity

1、打开Audacity软件,点击文件选择打开将要去除杂音保留人声的录音文件打开。

2、选择音频中需要消除杂音的片段,再在“效果”中选择“降噪”按钮点击,然后选择降噪强度、灵敏度、频率平滑,点击确定再保存就完成了。

以上就是今天介绍的的三种方法,希望对大家有所帮助~

手写和个性特征数据集 笔迹风格与人格特质的关系分析 手写和个性特征数据集 代码 下载 关于数据集 概述 笔迹和人格特征数据集基于大五人格模型探索了笔迹特征和人格特征之间的关系。它包含2000行和24列,包括手写样本参考、书写速度、人格特质得分、人口统计信息和其他手写相关特征。 该数据集可用于笔迹学研究、机器学习应用、个性预测和行为分析。 数据集结构 手写样本参考:每一行对应一个人的手写样本,由图像文件名表示。 写作速度:人写作的速度,以每分钟字数(wpm)为单位。 人格特质:五大人格特质的得分,在0到1之间标准化。 人口统计:性别和年龄信息。 手写特征:15个随机生成的手写相关特征,可能对应于倾斜、压力、间距或字母一致性等方面。 列详细信息 手写_示例 数据类型:字符串 描述:指扫描的手写样本的文件名(例如sample_1.jpg)。 书写_速度_wpm 数据类型:整数 描述:测量个人的书写速度,单位为每分钟单词数(wpm),范围为10到60 wpm。 开放性 数据类型:浮点(0-1) 描述:衡量个人的创造力、好奇心和开放性水平。更高的值表示对新体验的开放程度更高。 尽责性 数据类型:浮点(0-1) 描述:代表纪律、组织和责任。更高的值表示更高的可靠性和自律性。 外向性 数据类型:浮点(0-1) 描述:衡量社交能力、精力和热情。更高的值表示更外向的性格。 合意性 数据类型:浮点(0-1) 描述:反映善良、合作和同理心。更高的价值观意味着更大的同情心和社会和谐。 神经质 数据类型:浮点(0-1) 描述:表示情绪稳定和压力水平。较高的值表示焦虑和情绪波动增加,而较低的值表示情绪弹性。 性别 数据类型:字符串(男、女、其他) 描述:个人的性别认同。 年龄 数据类型:整数(18-60) 描述:个人的年龄,从18岁到60岁不等。 其他手写功能(功能_1至功能_15) 数据类型:浮点(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值