机器学习之决策树

优点

具有可读性,分类速度快。

步骤

特征选择,决策树的生成,决策树的修剪

结构

决策树是由 有向边 和 结点 组成。结点分 内部结点(一个特征或属性),叶结点(表示一个类)。

特征选择

熵 H(Y):表示随机变量不确定性的度量。

熵越大,随机变量的不确定性就越大。
比如数据样本里面 说方言特征(80%四川话,20%普通话),饮食特征(20%吃辣,20%吃甜,30%吃酸,30%吃麻),饮食特征的不确定性越大,其熵值就大。

条件熵 H(Y|X):在已知随机变量X 的条件下随机变量Y 的不确定性。

经验熵 H(D),经验条件熵 H(D|A):当熵和条件熵中的概率由数据估计得到时,就叫经验熵,经验条件熵。

我们在让机器学习的时候用的训练集,得到的就是经验熵H(D),经验条件熵H(D|A)。
在决策树中经验熵和熵,经验条件熵和条件熵是等价的。

信息增益 g(D,A):得知特征X 的信息而使得 Y的信息的不确定性减少的程度。

比如说,他四川话(方言特征X1)说得很好80%是四川人Y1(10%重庆Y2,10%云南Y3),他很能吃辣(饮食特征X2)30%是四川人Y1(20%湖南,20%重庆,20%江西,10%云南),那么方言特征对Y的信息不确定性减少的程度 就比 饮食特征对Y的信息不确定性减少的程度 更大。(也就是说方言比吃辣这个特性更有助于我们判断Y他是哪里人)
特征A对训练数据集D的信息增益值:g(D,A) = H(D) - H(D|A)

信息增益比 gk(D,A) = g(D,A) / H(D)

信息增益是相对于训练数据集而言的,训练集的经验熵如果偏大,会导致信息增益值偏大,反之偏小。信息增益比纠正了这一问题。

决策树的生成

ID3算法

输入:训练数据集D,特征集A,阀值a;
输出:决策树T。

  1. 计算A中各特征对D的 信息增益,选值最大的特征Ag;
  2. Ag > a,对Ag的每一可能值xi,依照Ag = xi 将D分割为若干非空子集Di,将Di中实例数最大的类作为标记,构建子结点,由结点及其子结点构成树T,返回T;直到Ag < a。
  3. 对第 i 个子结点,以Di为训练集,以A-{Ag}为特征集,递归地调用上面两步。

该算法是树结构的最初思想,该方法容易过拟合。所以下面每出现一种算法,就是一次问题的解决。

C4.5算法

改进了ID3算法,把信息增益 替换为信息增益比 用来进行特征选择。

ID3算法只能处理离散型变量
C4.5算法可以处理连续型变量

决策树的剪枝

从已生成的树上裁掉一些子树或叶结点,并将其根结点或父结点作为新的叶结点,从而简化分类树模型。

CART(分类与回归树)

可以处理分类和回归问题,可以处理连续型变量。
分类树:DecisionTreeClassifier
回归树:DecisionTreeRegressor

基于最大基尼指数。
在给定输入随机变量X条件下输出随机变量Y的条件概率分布 的学习方法。

随机森林(Random Forest)

随机:对样本和特征进行随机抽取
森林:多棵树

回归树算法有高方差的缺点
平均多个模型的预测,也叫Bagging,可以降低模型方差。

随机森林通过随机选择(自助法)一部分特征,样本。计算每个样本的回归树算法的均值,事实证明一定程度上减少了方差,但是这并不好解释。所以随机森林牺牲了回归树的可解释性。

AdaBoost算法

提升方法:在分类问题中,它通过改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提高分类的性能。

后面会讲到 XGBoost 这个非常重要的算法,曾经在kaggle项目中有着独孤求败的地位,至今也常被运用。内容很多,我会单独详细的讲。

  1. 提高那些被前一轮弱分类器错误分类样本的权值(使其受到更大关注),降低那些被正确分类样本的权值。
  2. 加大分类误差率小的弱分类器的权值,使其在表决中起较大的作用,减小误差率大的弱分类器的权值,使其在表决中起较小的作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值