线速度和角速度

转自:https://baike.baidu.com/item/%E7%BA%BF%E9%80%9F%E5%BA%A6/1532652?fr=aladdin

https://baike.baidu.com/item/%E8%A7%92%E9%80%9F%E5%BA%A6/1532689

线速度:

圆周运动的快慢可以用物体通过的弧长与所用时间的比值来度量。若物体由M向N运动,某时刻t经过A点。为了描述经过A点附近时运动的快慢,可以从此刻开始,取一段很短的时间△t,物体在这段时间内由A运动到B,通过的弧长为△L。比值△L/△t反映了物体运动的快慢,叫做线速度,用v表示,即v=△L/△t。

 

角速度:

一个以弧度为单位的圆(一个圆周为2π,即:360度=2π),在单位时间内所走的弧度即为角速度。公式为:ω=Ч/t(Ч为所走过弧度,t为时间)ω的单位为:弧度每秒 。

### S型曲线的线速度角速度公式编程 对于S型曲线运动规划,在机器人学中通常用于平滑控制机械臂或其他自动化设备的动作。这类曲线的特点是在起始阶段加速,中间保持恒定速度,最后减速停止,形成近似于字母"S"的时间-位置图。 为了在MATLAB中实现这一过程,首先要定义S型曲线的位置方程: \[ s(t) = A\left(\frac{10}{T^3}t^3-\frac{15}{T^4}t^4+\frac{6}{T^5}t^5\right), t \in [0,T] \] 这里 \(A\) 是总行程距离,\(T\) 表示完成整个动作所需时间。通过对方程求导可得线速度表达式: \[ v(t) = \dot{s}(t) = A\left(\frac{30}{T^3}t^2-\frac{60}{T^4}t^3+\frac{30}{T^5}t^4\right) \] 进一步求二阶导数得到加速度表达式: \[ a(t) = \ddot{s}(t) = A\left(\frac{60}{T^3}t-\frac{180}{T^4}t^2+\frac{120}{T^5}t^3\right) \] 如果要计算角速度,则可以根据给定的速度雅各比矩阵方法来转换线速度到关节空间中的表示形式[^1]。即利用关系式 \(v=J(q)\dot{q}\),其中 \(v\) 代表末端执行器的速度矢量;\(J(q)\) 是依赖于当前配置 \(q\) 的雅各比矩阵;而 \(\dot{q}\) 则对应着各个关节的角度变化率或者说角速度。 下面给出一段简单的MATLAB代码片段用来模拟上述描述的过程: ```matlab function [s, v, w] = generate_STrajectory(A, T, dt) % 参数初始化 time = 0:dt:T; % 计算位置、线速度以及假设已知雅各比矩阵后的角速度 s = A .* (10/T^3*time.^3 - 15/T^4*time.^4 + 6/T^5*time.^5); v = A * (30/T^3*time.^2 - 60/T^4*time.^3 + 30/T^5*time.^4); % 构造一个假想的简单雅各比矩阵 J 其逆矩阵 inv_J % 这里仅作为示范用途,实际应用需根据具体机构设计调整 n_joints = 6; % 假设有六个自由度 J = eye(n_joints); % 单位阵代替真实雅各比矩阵 inv_J = pinv(J); % 使用伪逆运算 % 将线速度映射回关节空间获得角速度 w = zeros(length(time),n_joints); for i = 1:length(time) w(i,:) = inv_J * v(i)'; end end ``` 此函数接受三个输入参数:最大位移 `A`、持续时间 `T` 及采样间隔 `dt`,并返回随时间变化的位置序列 `s`、对应的线速度 `v` 以及估计出来的角速度 `w`。注意这里的雅各比矩阵被简化处理成单位矩阵以便展示概念,而在真实的工程实践中应当依据具体的机械结构构建合适的雅各比矩阵模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值