pytorch
pytorch深度学习实战与源码学习
haimianjie2012
专注AI Complier,异构并行计算,HPC高性能计算,计算机视觉,深度学习和机器学习,C++开发;也写一些随笔读书笔记,面试题解析和求职攻略
展开
-
为什么相同图片相同模型,pytorch与darknet结果大不相同?
与pytorch框架对比模型对比darknet resnet34在ImageNet上预训练,top1:72.4,top5:91.1.调整学习率策略:pytorch exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)torch.optim.lr_scheduler:调整学习率darknet:调整策略为poly,darknet源代码中的公式int batch_num.原创 2020-09-28 15:07:34 · 2184 阅读 · 3 评论 -
pytorch简介与安装
发电房原创 2020-09-02 18:02:06 · 316 阅读 · 0 评论 -
pytorch框架基于resnet18训练OCT数据
1.resnet简介18是简化版34是18翻个倍50是34的加bottleneck版,实际没变101是在50的基础上加厚第四层的卷积块152是在50的基础上加厚第三层和第四层的卷积块至于为什么是这些数字,18和34应该是为了对标VGGNet参考资料:PyTorch源码解读之torchvision.models2.可视化深度学习7:TensorBoard使用方法python学习笔记之tensorboard绘制结构曲线分析各参数...原创 2020-09-03 18:17:18 · 393 阅读 · 0 评论 -
2.深入浅出pytorch
1.学什么机器学习模型训练步骤包括:数据、模型、损失函数、优化器。数据:就是如何读取数据、如何组织数据进行训练、图片如何进行预处理及数据增强。模型:如何构建模型模块?如何组织网络?如何初始化网络参数?如何定义网络层?损失函数:如何创建损失函数?如何设置损失函数超参数?如何选择损失函数?优化器:如何管理模型参数?如何管理多个参数组实现不同学习率?如何调整学习率?迭代训练:如何观察训练效果?如何绘制Loss/Accuray曲线?如何用TensorBoar.原创 2020-09-03 18:46:26 · 398 阅读 · 0 评论 -
7.pytorch训练技巧
1.模型的加载与保存2.断点续训练原创 2020-09-04 15:54:05 · 331 阅读 · 0 评论 -
张量简介与创建
习题练习张量与矩阵、向量、标量的关系是怎么样的? Variable“赋予”张量什么功能? 自动求导 采用torch.from_numpy创建张量,并打印查看ndarray和张量数据的地址; 实现torch.normal()创建张量的四种模式。张量定义张量创建:直接创建...原创 2020-09-08 09:11:57 · 452 阅读 · 0 评论 -
pytorch:张量的操作与线性回归
张量的操作1.张量的拼接与拆分1.1torch.cat()1.2torch.stack()1.3torch.chunk()1.4torch.split()2.张量的索引2.1torch.index_select()2.2masked_select()3.张量变换3.1torch.reshape()3.2torch.transpose()变换张量的两个维度3.3torch.t()3.4torch.squeeze()3.5torch.unsqueeze原创 2020-09-08 11:25:44 · 203 阅读 · 0 评论 -
pytorch:autograd与逻辑回归
1.torch.autograd1.1torch.autograd.barkward()自动求梯度。参数:tensor:用于求导的张量;retain_graph:保存计算图;create_graph:创建导数计算图,用于高阶求导;grad_tensors:多梯度权重;# ====================================== retain_graph ==============================================# flag = T原创 2020-09-08 18:04:43 · 236 阅读 · 0 评论 -
pytorch数据预处理1:Dataloader与DataSet
拆分RMB_DATA数据集1.os.path.dirnameimport osBASE_DIR = os.path.dirname(os.path.abspath(__file__))print("Base_dir:", BASE_DIR)print("abspath:",os.path.abspath(__file__))os.path.dirname(path)作用:去掉文件名,返回目录os.path.abspath(__file__) 作用: 获取当前脚本的完整路径os..原创 2020-09-22 18:46:30 · 744 阅读 · 0 评论