pytorch:autograd与逻辑回归

更多见深度学习.pytorch

目录

1.torch.autograd

1.1torch.autograd.barkward()

 1.2torch.autograd.grad()

1.3梯度不会自动清零

1.4依赖于叶子节点的节点,requires_grad默认为true 

1.5叶子节点不执行in-place

2.逻辑回归


1.torch.autograd

1.1torch.autograd.barkward()

自动求梯度。

参数:tensor:用于求导的张量;retain_graph:保存计算图;create_graph:创建导数计算图,用于高阶求导;grad_tensors:多梯度权重;

# ====================================== retain_graph ==============================================
# flag = True
flag = False
if flag:
    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)

    a = torch.add(w, x)
    b = torch.add(w, 1)
    y = torch.mul(a, b)

    y.backward(retain_graph=True)
    print(w.grad)
    y.backward()
    #此处为什么等于10
    print(w.grad)

如果不设置retain_graph=True,第二次调用y.backward()会报错。因为:??

# ====================================== grad_tensors ==============================================
flag = True
# flag = False
if flag:
    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)

    a = torch.add(w, x)     # retain_grad()
    b = torch.add(w, 1)

    y0 = torch.mul(a, b)    # y0 = (x+w) * (w+1)
    y1 = torch.add(a, b)    # y1 = (x+w) + (w+1)    dy1/dw = 2

    loss = torch.cat([y0, y1], dim=0)       # [y0, y1]
    grad_tensors = torch.tensor([1., 2.])

    loss.backward(gradient=grad_tensors)    # gradient 传入 torch.autograd.backward()中的grad_tensors

    print(w.grad)

输出:

tensor([9.])

 倘若改变权重,即:

grad_tensors = torch.tensor([1., 3.])

w的梯度变为11.

tensor([11.])

 1.2torch.autograd.grad()

求取梯度。

参数:

outputs:用于求导的张量

inputs:需要梯度的张量

create_graph:创建导数计算图

retain_graph:保存计算图

grad_outputs:多梯度权重

# ====================================== autograd.gard ==============================================
flag = True
# flag = False
if flag:

    x = torch.tensor([3.], requires_grad=True)
    y = torch.pow(x, 2)     # y = x**2

    grad_1 = torch.autograd.grad(y, x, create_graph=True)   # grad_1 = dy/dx = 2x = 2 * 3 = 6
    print(grad_1)

    grad_2 = torch.autograd.grad(grad_1[0], x)              # grad_2 = d(dy/dx)/dx = d(2x)/dx = 2
    print(grad_2)

输出:

(tensor([6.], grad_fn=<MulBackward0>),)
(tensor([2.]),)

说明:

计算grad_1时需要设置create_graph=true,保存导数计算图,这样才能继续计算grad_1的导数。

grad_1是元组,元组第一个元素是导数值,所以计算grad_2时需要取出grad_1的导数值即grad_1[0]。

1.3梯度不会自动清零

# ====================================== tips: 1 ==============================================
flag = True
# flag = False
if flag:

    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)

    for i in range(4):
        a = torch.add(w, x)
        b = torch.add(w, 1)
        y = torch.mul(a, b)

        y.backward()
        print(w.grad)

        #w.grad.zero_()

 输出:

tensor([5.])
tensor([10.])
tensor([15.])
tensor([20.])

如果不手动清零,w.grad就会累加。添加手动清零,zero_下划线代表原地操作。

  w.grad.zero_()

 手动清零后,输出:

tensor([5.])
tensor([5.])
tensor([5.])
tensor([5.])

1.4依赖于叶子节点的节点,requires_grad默认为true 

# ====================================== tips: 2 ==============================================
flag = True
# flag = False
if flag:

    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)

    a = torch.add(w, x)
    b = torch.add(w, 1)
    y = torch.mul(a, b)

    print(a.requires_grad, b.requires_grad, y.requires_grad)

输出:

True True True

1.5叶子节点不执行in-place

首先介绍一下什么是原地操作。

# ====================================== tips: 3 ==============================================
flag = True
# flag = False
if flag:

    a = torch.ones((1, ))
    print(id(a), a)

    a = a + torch.ones((1, ))
    print(id(a), a)

 输出

1768719029576 tensor([1.])
1768720256840 tensor([2.])

输出的两个a地址不相同,所以不是原地操作

# ====================================== tips: 3 ==============================================
flag = True
# flag = False
if flag:

    a = torch.ones((1, ))
    print(id(a), a)
    a += torch.ones((1, ))
    print(id(a), a)

 输出:

2581512492360 tensor([1.])
2581512492360 tensor([2.])

两个a的地址相同,所以该操作为原地操作。

 因为计算中间变量的梯度,会用到叶子节点,会保存叶子节点的地址。如果叶子节点进行了in-place操作,计算中间变量的梯度就会报错。

2.逻辑回归

# -*- coding: utf-8 -*-
"""
# @file name  : lesson-05-Logsitic-Regression.py
# @author     : tingsongyu
# @date       : 2019-09-03 10:08:00
# @brief      : 逻辑回归模型训练
"""
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
torch.manual_seed(10)


# ============================ step 1/5 生成数据 ============================
sample_nums = 100
mean_value = 1.7
bias = 1
n_data = torch.ones(sample_nums, 2)
x0 = torch.normal(mean_value * n_data, 1) + bias      # 类别0 数据 shape=(100, 2)
y0 = torch.zeros(sample_nums)                         # 类别0 标签 shape=(100)
x1 = torch.normal(-mean_value * n_data, 1) + bias     # 类别1 数据 shape=(100, 2)
y1 = torch.ones(sample_nums)                          # 类别1 标签 shape=(100)
train_x = torch.cat((x0, x1), 0)
train_y = torch.cat((y0, y1), 0)


# ============================ step 2/5 选择模型 ============================
class LR(nn.Module):
    def __init__(self):
        super(LR, self).__init__()
        self.features = nn.Linear(2, 1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        x = self.features(x)
        x = self.sigmoid(x)
        return x


lr_net = LR()   # 实例化逻辑回归模型


# ============================ step 3/5 选择损失函数 ============================
loss_fn = nn.BCELoss()

# ============================ step 4/5 选择优化器   ============================
lr = 0.01  # 学习率
optimizer = torch.optim.SGD(lr_net.parameters(), lr=lr, momentum=0.9)

# ============================ step 5/5 模型训练 ============================
for iteration in range(1000):

    # 前向传播
    y_pred = lr_net(train_x)

    # 计算 loss
    loss = loss_fn(y_pred.squeeze(), train_y)

    # 反向传播
    loss.backward()

    # 更新参数
    optimizer.step()

    # 清空梯度
    optimizer.zero_grad()

    # 绘图
    if iteration % 20 == 0:

        mask = y_pred.ge(0.5).float().squeeze()  # 以0.5为阈值进行分类
        correct = (mask == train_y).sum()  # 计算正确预测的样本个数
        acc = correct.item() / train_y.size(0)  # 计算分类准确率

        plt.scatter(x0.data.numpy()[:, 0], x0.data.numpy()[:, 1], c='r', label='class 0')
        plt.scatter(x1.data.numpy()[:, 0], x1.data.numpy()[:, 1], c='b', label='class 1')

        w0, w1 = lr_net.features.weight[0]
        w0, w1 = float(w0.item()), float(w1.item())
        plot_b = float(lr_net.features.bias[0].item())
        plot_x = np.arange(-6, 6, 0.1)
        plot_y = (-w0 * plot_x - plot_b) / w1

        plt.xlim(-5, 7)
        plt.ylim(-7, 7)
        plt.plot(plot_x, plot_y)

        plt.text(-5, 5, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
        plt.title("Iteration: {}\nw0:{:.2f} w1:{:.2f} b: {:.2f} accuracy:{:.2%}".format(iteration, w0, w1, plot_b, acc))
        plt.legend()

        plt.show()
        plt.pause(0.5)

        if acc > 0.99:
            break

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

haimianjie2012

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值