AAAI2024最佳解读|S2WAT Image Style Transfer via Hierarchical Vision Transformer using Strips Windo

论文标题

S2WAT: Image Style Transfer via Hierarchical Vision Transformer Using Strips Window Attention
S2WAT: 基于条带窗口注意力的分层视觉Transformer图像风格迁移

论文链接

S2WAT: Image Style Transfer via Hierarchical Vision Transformer Using Strips Window Attention论文下载

论文作者

Chiyu Zhang, Xiaogang Xu, Lei Wang, Zaiyan Dai, Jun Yang

内容简介

本文提出了一种新的图像风格迁移框架,称为条带窗口注意力Transformer(S2WAT),旨在解决传统Transformer在局部建模方面的不足。S2WAT通过引入多种窗口形状的注意力计算,能够同时捕获短距离和长距离的依赖关系。该方法采用“Attn Merge”策略,动态确定不同窗口注意力的空间权重,从而有效整合局部和全局特征。通过在多个代表性数据集上的广泛实验,S2WAT在风格迁移任务中表现出色,超越了现有的最先进方法。本文的贡献在于提出了一种新颖的分层Transformer架构,能够同时处理多种风格,并有效缓解局部性问题。在这里插入图片描述

分点关键点在这里插入图片描述

  1. S2WAT框架

    • S2WAT是一个分层Transformer框架,专门设计用于图像风格迁移。它通过条带窗口注意力机制(SpW Attention)来捕获局部和全局特征,解决了传统方法在局部建模上的不足。
  2. 条带窗口注意力机制

    • SpW Attention结合了三种窗口类型:水平条带、垂直条带和方形窗口。通过这些不同形状的窗口,S2WAT能够在提取非局部特征的同时,关注局部信息,从而实现更好的风格迁移效果。
  3. Attn Merge策略

    • “Attn Merge”方法通过计算不同窗口注意力之间的空间相关性,动态合并注意力输出。这种方法相较于静态合并策略(如求和和拼接)具有更高的灵活性和有效性,能够增强风格迁移的效果。
  4. 实验结果与性能

    • 在多个公开数据集上的实验表明,S2WAT在风格迁移任务中表现出色,达到了最先进的性能。通过定量和定性分析,验证了该框架的有效性和实用性。在这里插入图片描述

论文代码

代码链接:https://github.com/AlienZhang1996/S2WAT

中文关键词

  1. 图像风格迁移
  2. 分层Transformer
  3. 条带窗口注意力
  4. Attn Merge
  5. 短距离和长距离依赖
  6. 计算机视觉

AAAI论文合集:

AAAI论文合集

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

### AAAI 2024 Conference Related Code Repositories For individuals interested in exploring the latest advancements presented at conferences like AAAI 2024, several platforms provide access to associated code repositories and examples. GitHub serves as a primary hub where researchers often publish their work alongside papers[^2]. By navigating through specific tags or using search terms such as "AAAI 2024," one can discover numerous projects that were either showcased during the event or inspired by it. Additionally, many academic institutions maintain dedicated pages for each edition of major AI conferences including AAAI. These sites typically include links to accepted paper submissions along with supplementary materials which may consist of datasets used in experiments, implementation details, and even full source codes when authors opt to share them publicly[^1]. Moreover, community-driven initiatives also play an important role in aggregating resources around significant events within the field of artificial intelligence. Websites focused on machine learning and data science frequently compile lists of noteworthy contributions from recent gatherings, offering readers easy navigation between abstracts and corresponding software implementations available online. #### Example Search Query for Finding Relevant Projects To streamline this process further, here is how someone might structure a query aimed at uncovering relevant repositories: ```bash site:github.com intitle:"AAAI 2024" ``` This command leverages Google's advanced operators to filter results specifically targeting titles containing both keywords while restricting searches exclusively within the domain name provided (in this case, GitHub). --related questions-- 1. How do I effectively contribute my own project to be featured prominently after attending prominent AI conferences? 2. What are some best practices for documenting research code intended for public release following publication in journals or presentation at symposiums? 3. Can you recommend any tools designed to facilitate collaboration among developers working on open-source AI applications derived from conference proceedings?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值