MAX-Plus algebra最大加代数

首先给出Max-Plus定义:
\mathbb{R}^{*}=R\cup \left \{ -\infty \right \} ,在R*上定义两个运算:\forall a,b\in \mathbb{R}^{*},a\bigoplus b=max\left \{ a,b \right \} , a\bigotimes b=a+b,则称\left ( R^{*},\bigoplus ,\bigotimes \right )是Max-Plus代数。
Max-Plus代数主要用于解决非线性问题,例如调度理论等离散系统。


Max-Plus在矩阵中的一些计算:
基础运算:
两个矩阵A\in \mathbb{R}^{*}(m,k),B\in \mathbb{R}^{*}(k,n),乘运算的结果为一个矩阵C\in \mathbb{R*}\left \{ m,n \right \},C中的每一个元素满足下面的公式:

A=\begin{bmatrix} a &b &c \\ d& e & f\\ g&h &i \end{bmatrix} B=\begin{bmatrix} a_{1} &b_{1} &c_{1} \\ d_{1}& e_{1} & f_{1}\\ g_{1}&h_{1} &i_{1} \end{bmatrix} A\bigotimes B=C

C=\begin{bmatrix} a_{2} &b_{2} &c_{2} \\ d_{2}& e_{2} & f_{2}\\ g_{2}&h_{2} &i_{2} \end{bmatrix} 
a_{2}=max\left \{a+a_{1},b+d_{1},c+g_{1} \right \}, b_{2}=max\left \{a+b_{1},b+e_{1},c+h_{1} \right \},   d_{2}=max\left \{d+a_{1},e+d_{1},f+g_{1} \right \}       
也就是说,C中的第 i 行,第 j 列元素对应的A中的第i行和B中的第j列的数各自相加,取最大作为该元素。
方阵A的k次幂记为A^{\left ( k \right )}A^{\left ( k \right )}=A^{\left ( k-1 \right )}*A


将Max-Plus代数矩阵和图对应:
1.对应关系:

我们把图用矩阵的形式表示,用方阵A\in \mathbb{R*}\left \{n,n \right \}来表示g(A)\left ( \mathbb{V,\mathbb{E}} ,w\right ),其中V代表节点,E代表边,w代表边上的权值。矩阵中的每一个元素\bg_white a_{ij}代表图A中的由节点i到节点j的边,并赋予权值,如果i到j间没有边,则a_{ij}=-\infty


上图所示A为左图的

下面介绍几个相关定义(以上图为例):
\dpi{100} \bg_white \ { }{}{\color{Golden} }\Pi:图中的路径,对应路径中若干节点的序列\left ( i_{1},i_{2},...i_{t},i_{t+1} \right ),每相邻的结点对应图中的一条边。(蓝线表示路径)
{\color{Golden} }cycle:对于\dpi{100} \bg_white \ { }{}{\color{Golden} }\Pi,如果i_{1}=i_{t+1}, (第一个节点与最后一个节点相同),则称\Pi为cycle(环)(红线表示环)
length\left | \Pi \right |:路径的长度,路径中边的数量。
w\left ( \Pi \right ):路径的权重,路径中所有的边的权重之和。
\overline{w}\left ( c \right ):环c的平均值,计算方法:w\left ( c \right )/\left | c \right | ,环c的路径的权重与环c的长度的比值
\lambda \left ( A \right ):图A中的最大的\overline{w}\left ( c \right ),即密度最大环的特征值。(计算的是密度最大
strongly  connected:强连通的,如果A中的所有节点都包含在一个公共的环中,则图A就是strongly \,\, connected
 (上图:(1,4,2,3,5,2,3,1)是一个cycle,所以A是强连通的)
irreducible:不可约的如果A是强连通的,那么A就是不可约的。
strongly  connected component:如果A是强连通图,那么A的子图为强连通部分
highly connected component:强连通部分,对于图A(V,E)的子图\K\kappa=(k,E\capkxk),若\kappa中存在环,并且\overline{w}\left ( c \right )=\lambda \left ( A \right ),则\kappa就是图A的强连通部分。
HCC^{*}\left ( g(A)\right ): 图A中的所有强连通部分的集合。
hper(\kappa):  \kappa的high period,计算公式:hper(\kappa)=gcd\left \{ \left | c \right |:c \, \, is\, \, a\, \, cycle\, \, in\, \, \kappa,\, \, \bar{w}\left ( c \right )=\lambda \left ( A \right ) \right \}
elementary path:  基础路径,即无环路径。
cycle extention/ cycle deletion:  对于\Pi ^{'},如果可以通过删除环(cycle deletion)得到一个路径\Pi,那么\Pi ^{'}就是\Pi的环扩展(cycle extention)路径,记作\Pi \subseteq _{c}\Pi ^{'}
P_{g(A)}(ij)): 由节点i到节点j的路径 的集合
P^{*}_{g(A)}(ij)) :由节点i到节点j的基础路径的集合
P^{t}_{g(A)}(ij)) :节点i到节点j的长度为t的路径的子集
power sequence of elementary path:若幂次为t,则幂序列为(a^{1}_{\Pi },a^{2}_{\Pi },...a^{t-1}_{\Pi },a^{t}_{\Pi }),每一项的计算公式为:a^{t}_{\Pi }=max\left \{ w\left (\Pi ^{'} \right ): \Pi ^{'} \in \mathbb{P}^{t}_{g(A)}ij,\Pi \subseteq _{c}\Pi ^{'}}
也就是说,幂序列中的每一个数都是长度为t的对应环扩展路径的最大权值。在矩阵中的体现就是矩阵中的每一个元素取值都是对应路径的最大权重。同样幂序列也可以扩展到矩阵中。
总结与理解:将Max-Plus运用到对应图的矩阵中,矩阵A对应g(A), A^{1} 表示:\forall i j\in \mathbb{V}a_{ij}表示路径长度为1 的权重。类似,A^{t}表示:\forall i j\in \mathbb{V}a_{ij}表示路径长度为t 的权重,那么矩阵A的幂序列表示,ij之间不同长度路径对应的权序列。
2.线性周期性:
almost linear period:
对于一个序列a^{*}={a^{1},a^{2},...a^{t}}, 如果\forall t> r, a^{t+p}=a^{t}+p\cdot q,那么这个序列就是最具线性周期的。
lper(a*):linear period  p
lfac(a*):linear factor  q
ldef(a*): linear defect  r
扩展:若矩阵A的每一个元素的幂序列都是最具线性周期性的,那么矩阵A就是最具线性周期性的,lper(A)=lcm{lper(a^{*}_{ij})},
lfac(A)=lfac(a^{*}_{ij}), ldef(A*)=max{ldef(a^{*}_{ij})}
下面给出不可约的矩阵的lper,lfac的计算方法:
lfac(A)=Q, q_{ij}=\lambda(A), lper(A)=  lcm\left \{ hper(\kappa):\kappa\in HCC^{*}(g(A)) \right \}
举例:


矩阵A对应右图,g(A)是强连通的,图A中有三个环(1,1),(1,4,2,3,1),(2,5,3,2),他们的环平均值均为0.1,而且图A中没有比这个平均值更大环,所以可得:
\lambda \left ( A \right )=0.1
HCC^{*}\left ( g(A)\right )={{1}
                           {1,4},{1,3},{1,4,2},{1,3,2},{1,3,5},
                           {1,4,2,3},{1,4,2,3,5},{3},{3,1},{3,1,4},...} ,
hper({1,1})=1, hper({1,4,2,3,1})=1, hper({2,5,3,2})=1
hper(A)=gcd{1,2,3}=1
lfac(A)=0.1, lper(A)=1?
almost generally periodic:  如果存在r p和向量Q(i)\in \mathbb{R}^{*},使得\forall i=1...p,\forall t>r,t\equiv i(mod\, p),a^{(t+p)}=a^{(t)}+p\cdot Q(i),那么序列a^{*}=((a^{(t)})),t\in \mathbb{N}^{+}是almost generally periodic,那么:
        最小的r是general defact,记为gdef(a^{*}); 
        最小的p是general period,记为gper(a^{*}); 
        Q为general factor,记为gfac(a^{*}).
扩展: 如果矩阵A中的每一个元素的幂序列都是almost generally periodic的,那么这个矩阵就是almost generally periodic的,那么: gfac(A^{*})=(gfac(a^{*}_{ij}))为generally factor matrix
          gdef(A)=max\left \{ (gdef(a^{*}_{ij}))\right \}为general defact
          gper(A)=lcm\left \{ (gper(a^{*}_{ij}))\right \}为general period
         
         
         

 










 

 

 

 

 

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值