HDU 2544 最短路 dijkstra&&SPFA

最短路

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 42695    Accepted Submission(s): 18706


Problem Description
在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?

 

Input
输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
输入保证至少存在1条商店到赛场的路线。
 

Output
对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间
 

Sample Input
  
  
2 1 1 2 3 3 3 1 2 5 2 3 5 3 1 2 0 0
 

Sample Output
  
  
3 2
 

Source
 

//最短路径的基本模板题,参考代码如下:

 dijkstra

#include<stdio.h>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std;  
int cost[100][101];
int d[110];
bool used[110];
int n,m;
void dijkstra(int s)
{
   for(int i=1;i<=n;i++)
     { d[i]=INF;
       used[i]=false; 
     }	
	 d[s]=0;
  while(true)
    {
    	int v=-1;
    	for(int u=1;u<=n;u++)
    	  if(!used[u]&&(v==-1||d[u]<d[v]))
    	     v=u;
        if(v==-1)break;
        used[v]=true;
        for(int u=1;u<=n;u++)
         d[u]=min(d[u],d[v]+cost[v][u]);
    }
}
int main()
{
	 while(scanf("%d%d",&n,&m),n!=0&&m!=0)
	 {
	 	 int a,b,c;
	 	 for(int i=1;i<=n;i++)
	 	  for(int j=1;j<=n;j++)
	 	     cost[i][j]=INF;
	 	   for(int i=1;i<=m;i++)
	 	    { 
	 	      scanf("%d%d%d",&a,&b,&c);
			    cost[a][b]=c;
				cost[b][a]=c;	 
	 	    }
	 	dijkstra(1);
	 	printf("%d\n",d[n]);
	 }
	  return 0;
	
}


SPFA算法

#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn  1010
#define maxm  20010
#define INF   0x3f3f3f3f
int n,m;
int head[10010];
int d[10010];
int vis[10010];
int cnt;
struct s
{
	 int u,v,w,next;
}edge[10010];
void add(int u,int v,int w)
{ 
  edge[cnt].u=u;
  edge[cnt].v=v;
  edge[cnt].w=w;
  edge[cnt].next=head[u];
  head[u]=cnt++;	
}
void init()
{   cnt=0;
	memset(head,-1,sizeof(head));
}
void SPFA(int s)
{
	queue<int>q;
	memset(vis,0,sizeof(vis));
	memset(d,INF,sizeof(d));
	q.push(s);
	d[s]=0;
	vis[s]=1;
	while(!q.empty())
	{
		int u=q.front();
		q.pop();
		vis[u]=0;
		for(int i=head[u];i!=-1;i=edge[i].next)
		 {
		 	 int v=edge[i].v;
		 	 if(d[v]>d[u]+edge[i].w)
		 	 {d[v]=d[u]+edge[i].w;
		 	   if(!vis[v])
		 	    {
		 	    	vis[v]=1;
		 	    	q.push(v);
		 	    }
		 	 }
//		 	printf("%d\n",d[N]);
		 }
		
		
	}
	printf("%d\n",d[n]); 
}
void getmp()
{
	 int a,b,c;
	 while(m--)
	 {
	 	scanf("%d%d%d",&a,&b,&c);
	 	add(a,b,c);
	 	add(b,a,c);
	 }
}
int main()
{
   while(scanf("%d%d",&n,&m),n|m)
    {
    	init();
    	getmp();
    	SPFA(1);
    }
	return 0;	
}



 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值