HDu 2544 最短路【dijkstra & floyed & SPFA 】

最短路

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 42527    Accepted Submission(s): 18622


Problem Description
在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?

 


 

Input
输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
输入保证至少存在1条商店到赛场的路线。
 


 

Output
对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间
 


 

Sample Input
  
  
2 1 1 2 3 3 3 1 2 5 2 3 5 3 1 2 0 0
 


 

Sample Output
  
  
3 2

 

 

 

求特定起点的到终点的最小值,取距离当前起点最近的点为中间点,比较起点到其他点的距离与起点到中间点的距离加上中间点到其他点的距离之和的大小,更新起点到其他点的最小值,以得到起点到终点的最小值

dijkstra

#include <iostream>
#include<cstdio>
#include<cstring>
#define inf 0x3f3f3f3f
using namespace std;
int n,map[110][110];
int vis[110],rec[110];
void dijkstra(int s,int e)
{
    int minw,mark;
    memset(vis,0,sizeof(vis));
    vis[s]=1;
    for(int i=1;i<=n;++i)
        rec[i]=map[s][i];
    for(int i=1;i<=n;++i)
    {
        minw=inf;
        for(int j=1;j<=n;++j)
        {
            if(!vis[j]&&rec[j]<minw)
            {
                minw=rec[j];
                mark=j;
            }
        }
        vis[mark]=1;
        for(int j=1;j<=n;++j)
        {
            if(!vis[j]&&rec[j]>rec[mark]+map[mark][j])
                rec[j]=rec[mark]+map[mark][j];
        }
    }
    printf("%d\n",rec[e]);
}
int main()
{
    int m,a,b,v;
    while(scanf("%d%d",&n,&m)&&(n||m))
    {
        memset(map,inf,sizeof(map));
        while(m--)
        {
            scanf("%d%d%d",&a,&b,&v);
            if(v<map[a][b])
                map[a][b]=map[b][a]=v;
        }
        dijkstra(1,n);
    }
    return 0;
}

 

 

 

求任意两点间的最短距离,任取中间点不断更新最小值

floyed

#include<iostream>
#include<cstdio>
#include<cstring>
#define inf 0x3f3f3f3f
using namespace std;
int n,map[110][110];
void floyed()
{
    for(int k=1;k<=n;++k)
    {
        for(int i=1;i<=n;++i)
        {
            for(int j=1;j<=n;++j)
            {
                if(map[i][j]>map[i][k]+map[k][j])
                    map[i][j]=map[i][k]+map[k][j];
            }
        }
    }
    printf("%d\n",map[1][n]);
}
int main()
{
    int m,a,b,v;
    while(scanf("%d%d",&n,&m)&&(n||m))
    {
        memset(map,inf,sizeof(map));
        while(m--)
        {
            scanf("%d%d%d",&a,&b,&v);
            if(v<map[a][b])
                map[a][b]=map[b][a]=v;
        }
        floyed();
    }
    return 0;
}


 第一篇SPFA,参照宇神模板

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define maxn 110
#define maxm 20000+20
#define inf 0x3f3f3f
using namespace std;
int n,m,cnt,head[maxn],rec[maxn],vis[maxn];
struct node
{
    int from,to,val,next;
};
node edge[maxm];
void add(int a,int b,int c)
{
    edge[cnt].from=a;
    edge[cnt].to=b;
    edge[cnt].val=c;
    edge[cnt].next=head[a];
    head[a]=cnt++;
}
void initialize()
{
    cnt=0;
    memset(head,-1,sizeof(head));
}
void getmap()
{
    int a,b,c;
    while(m--)
    {
        scanf("%d%d%d",&a,&b,&c);
        add(a,b,c);
        add(b,a,c);
    }
}
void spfa(int s)
{
    queue<int>q;
    memset(vis,0,sizeof(vis));//记录已在队列中的点
    memset(rec,inf,sizeof(rec));//记录最短距离
    rec[s]=0;
    vis[s]=1;
    q.push(s);
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        vis[u]=0;//该点之后还可能进入队列
        for(int i=head[u];i!=-1;i=edge[i].next)
        {
            int v=edge[i].to;
            if(rec[v]>rec[u]+edge[i].val)
            {
                rec[v]=rec[u]+edge[i].val;
                if(!vis[v])
                {
                    q.push(v);//该点若不在队列中,更新过的rec[v]可能会影响其他点的最短距离所以在进入队列
                    vis[v]=1;
                }
            }
        }
    }
    printf("%d\n",rec[n]);
}
int main()
{
    while(scanf("%d%d",&n,&m)&&(n||m))
    {
        initialize();
        getmap();
        spfa(1);
    }
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值