paper:https://arxiv.org/abs/2004.05508
code:GitHub - zhuhancheng/MetaIQA
首先,需要了解一下什么是元学习。元学习就是让物体学会学习。
元学习的输入是很多任务及其对应的训练数据,这些训练数据分为支持集和查询集,通过这些训练数据得到一个先验知识网络,通过 Fine‐tuning该网络得到符合新的目标任务网络。
元学习可以分为三种主要方法: 基于回归神经网络(RNNs)的记忆方法 ,基于度量的方法和基于优化的方法。以记忆为基础的方法使用带有记忆的RNNs 来储存以前任务的经验知识来学习新任务;基于度量的分类方法主要学习将输入空间映射到新的嵌入空间的嵌入函数,利用最近邻分类器或线性分类器进行图像分类;基于优化的方法旨在通过使用少量训练样本对模型进行微调,学习模型的初始化参数,从而快速学习新任务。本文是基于优化的方法。
参考文章元学习 - 搜索结果 - 知乎便于我们对元学习的理解。
本文贡献:
1.提出基于深度元学习的NR-IQA方法,可以很好地处理多样失真。
2.采用元学习的方法来学习不同失真类型之间共享的元知识。在多种特定失真NR-IQA任务上使用双层梯度优化实现的。元知识是一种理想的预训练模型,可以快速适应未知的失真。
3.我们在五个公共的 IQA 数据库上做了大量的实验,包含了合成的和真实的失真。结果表明,该模型在泛化能力和评价精度方面明显优于目前国内外最先进的数字图像质量评价方法。
1.方法
利用元学习技术,通过一系列已知失真类型的 NR-IQA任务来学习共享的质量先验模型,然后用未知失真的NR-IQA任务对质量先验模型进行微调。整个框架包括两步,质量先验模型的元训练、微调未知失真的NR-IQA任务。在第一步中,利用一系列特定失真的NR-IQA 任务来建立元训练集,并将元训练集进一步划分为支持集和查询集。