摘要
提出的向量回归框架产生一个输入图像的信念分数向量,探讨质量评价中的不确定因素,设计信念得分来衡量一个图像的自信程度,并将其分配到相应的质量等级;提出一个面向对象的池策略,通过结合图像内容的语义信息来进一步提高性能;目标被占用的区域在池化阶段被分配更多权重。
本文贡献:
1. 提出向量回归框架。探索质量评价的不确定性,引入一个信念分数的向量来度量图像被分配到相应的质量等级的概率。
2. 提出的向量回归框架是一个开放的框架,实验结果表明,无论网络结构如何,该算法都可以与不同的网络结构相结合,提高性能。
3. 为了进一步提高全局评分估计阶段的性能,提出了一种面向对象的池策略。这种策略赋予像对象一样的区域更多的权重,在这些区域内的补丁更有可能是对象提议。
在向量回归阶段,引入多个质量等级,并使用信念分数向量来衡量被分配给这些等级的一个输入图像的信任度,向量回归是由一个卷积神经网络实现的,由 cnn 生成的信念分数图进一步转化为局部分数图,用于全局分数池化。
在分数池化阶段,提出面向对象池化策略使局部分数图转换为图像级质量分数,对象所占据的区域将在提议的池策略中得到更多的权重。
1.向量回归基本原理
模拟因个人的兴趣等不确定性,我们引入了一个概率分布