2024无参考图像的清晰度评价方法

无参考图像质量评价算法
无参考图像质量评价是指参考图像不存在的情况下,直接计算失真图像的视觉质量。根据无参考图像质量评价模型在计算图像视觉质量时是否需要图像的主观分数来进行训练,无参考图像质量评价算法可分为基于监督学习的无参考图像质量评价算法和基于无监督学习的无参考图像质量评价算法。

1 基于监督学习的无参考图像质量评价算法

基于监督学习的无参考图像质量评价算法主要包括基于传统机器学习的方法和基于深度学习的方法。基于传统机器学习的该类方法旨在设计有效的视觉特征表达方法,通过支持向量回归等传统机器学习方法学习视觉特征到图像视觉质量的映射模型,而基于深度学习的方法则主要通过构建深度神经网络,学习图像的视觉特征以构建图像质量评价模型,或直接通过端到端来学习失真图像到图像视觉质量的函数表达。

2 基于无监督学习的无参考图像质量评价算法

类似基于监督学习的无参考图像质量评价算法,基于无监督学习的无参考图像质量评价算法主要包括基于传统机器学习的方法和基于深度学习的方法。

常见的图像退化因素如图所示:

1 A Review on No-reference Quality Assessment for Blurred Image 2022

NR-IQA方法很好地解决了无参考图像情况下的图像质量评估. NR-IQA也称为盲图像质量评价(Blind image quality assessment, BIQA), 该类方法主要根据失真图像的自身特征来估计图像质量. 针对模糊失真的NR-IQA方法又称为盲/无参考图像清晰度评价(Blind/no-reference image sharpness assessment)方法, 该方法分为两类, 一类是仅针对模糊失真的NR-IQA方法, 另外一类则是针对各种失真类型(包含模糊失真)的通用NR-IQA方法, 包括各种类型的噪声(如加性噪声、高斯噪声、掩模噪声、脉冲噪声等)、各种类型的模糊(如失焦模糊、运动模糊等)、JPEG(2000)压缩、JPEG(2000)传输错误、对比度问题(如对比度变化、整体对比度缩减等)、局部块失真、快速瑞利衰减等.

针对模糊失真的NR-IQA性能已经逐渐接近甚至达到FR-IQA方法和RR-IQA方法的评价性能. 尤其是近几年来, 随着深度学习等基于学习的方法在NR-IQA中的广泛应用, 评价性能得到了进一步的提升. 与此同时, 伴随着方法的改进, 针对不同模糊失真(人工模糊及自然模糊)的数据集也不断涌现, 从而为不同算法的验证提供了保证。产生模糊的原因可分为两大类型: 人工模糊与自然模糊. 人工模糊是通过不同类型的滤波器人为地给清晰图像加入不同类型的模糊, 如经常被用于模糊图像质量评价的高斯模糊. 而自然模糊包括物体移动引起的运动模糊, 拍摄时相机抖动引起的抖动模糊, 采集过程中失焦引起的失焦模糊, 远距离成像时的大气湍流模糊等。

2 Blind Image Quality Assessment via Vision-Language Correspondence: A

Multitask Learning Perspective CVPR2023

LIQA

目标检测识别依赖于对失真不敏感的特征,从而对这种损坏具有鲁棒性。这也表现在视觉识别的常见做法中,即将合成扭曲视为数据增强[16]的形式。与之形成鲜明对比的是,BIQA优先依赖于失真敏感特征来量化各种语义内容的图像的感知质量。

例如,图1中的(c)可以被描述为“一张带有高斯模糊伪影的城市景观的照片,其质量很差。”我们首先使用文本模板来总结输入图像的场景类别、失真类型和质量水平。我们用场景类别和失真类型标签来补充现有的IQA数据集[7,11,17,22,27,54]。

近年来,BIQA的新模式蓬勃发展,旨在探索下一代BIQA的新发展方向。代表性的工作包括:局部质量预测[72]的补丁到图像学习,有价值样本识别[65,66]的主动学习,交叉失真场景[78]的统一优化,快速适应[80]的元学习,流畸变[29,39,74,77]的持续学习,以及鲁棒性评估[75]的感知攻击。在本文中,我们利用多任务学习来促进辅助知识的转移。在本文中,我们利用多任务学习来促进辅助知识的转移。

5种质量水平: c∈C={1,2,3,4,5}={“坏”,“差”,“好”,“好”,“完美“}

9个场景类别:s∈S={“动物”、“城市景观”、“人”、“室内场景”、“景观”、“夜景”、“植物”、“静物”和“其他”}

11个退化判断 d ∈ D={“模糊”、“颜色相关”、“对比度”、“JPEG压缩”、“JPEG2000压缩”、“噪声”、“过度曝光”、“量化”、“曝光不足”、“空间本地化”和“其他”},“其他”类别表示没有退化的图像,即原始质量。

自然创建一个文本模板,将三个任务的标签放在一起:“一个(n) {s}与{}文物的照片,14073边缘化软余弦相似度是{}质量”,我们有5×9×11 = 495候选文本描述(类别)。

然而,p(c,s,d|x)可能不能被准确地推断出来,因为现有的IQA数据集只提供连续的质量分数,而不是离散的质量水平。此外,由于主观测试数据集的差异,不同的IQA数据集具有不同的感知尺度,这进一步使质量分数到水平的转换复杂化。

在深度学习的时代,BIQA的发展可以通过策略来缓解带MoS标签的数据缺乏的问题,当合成距离(如高斯噪声和JPEG压缩)是主要问题时,分段训练[4]、质量预训练[32,37,76]和从噪声伪标签中学习[2,38,67]是实用的训练技巧,较少依赖Mos。这里

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值