paper:J. Imaging | Free Full-Text | No-Reference Image Quality Assessment with Global Statistical Features
code:GitHub - Skythianos/GSF-IQA
摘要:
引入的方法使用了一组新的质量感知特征,这些特征全局地描述了给定测试图像的统计特性,如扩展的局部分形维度分布特征、使用不同域扩展第一位数分布特征、比拉普拉斯特征、影像瞬息、各种各样的感知特征。
1提出的方法
从训练图像中提取一组特征向量来训练机器学习模型,该模型在测试阶段用于将特征向量映射为感知质量分数。通过五个IQA基准数据库进行详细的参数研究,以找到最合适的回归。共132维特征提取,包括扩展的局部分形维度分布特征、使用不同域扩展第一位数分布特征(FDD)图、比拉普拉斯特征、影像瞬息、相对梯度方向的直方图方差(RO)、梯度幅度(RM)、相对梯度震级(GM)图、感知特征(色彩、清晰度、暗通道特征、对比度)。
1.1扩展局部分形维数分布特征向量
通过将原始图像中的每个像素视