论文阅读:No-Reference Image Quality Assessment with Global Statistical Features

该研究提出一种无参考图像质量评估方法,利用全局统计特征,包括扩展的局部分形维数、第一位数分布、比拉普拉斯特征、影像瞬息、梯度和感知特征。通过机器学习模型将这些特征映射为感知质量分数。在多个IQA基准数据库上进行了详细的研究和实验,证实了所提方法的有效性。
摘要由CSDN通过智能技术生成

 paper:J. Imaging | Free Full-Text | No-Reference Image Quality Assessment with Global Statistical Features

code:GitHub - Skythianos/GSF-IQA

摘要:

引入的方法使用了一组新的质量感知特征,这些特征全局地描述了给定测试图像的统计特性,如扩展的局部分形维度分布特征、使用不同域扩展第一位数分布特征、比拉普拉斯特征、影像瞬息、各种各样的感知特征。

1提出的方法

从训练图像中提取一组特征向量来训练机器学习模型,该模型在测试阶段用于将特征向量映射为感知质量分数。通过五个IQA基准数据库进行详细的参数研究,以找到最合适的回归。共132维特征提取,包括扩展的局部分形维度分布特征、使用不同域扩展第一位数分布特征(FDD)图、比拉普拉斯特征、影像瞬息、相对梯度方向的直方图方差(RO)、梯度幅度(RM)、相对梯度震级(GM)图、感知特征(色彩、清晰度、暗通道特征、对比度)。

1.1扩展局部分形维数分布特征向量

通过将原始图像中的每个像素视

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值