对抗神经网络GAN中d_loss g_loss两种更新参数的图解释

本文探讨了在对抗神经网络GAN中,d_loss和g_loss的反向传播过程中计算图的保留问题。若先计算d_loss,需使用retain_graph=True或detach()避免影响g_loss;反之,若先计算g_loss,detach()fake_img即可不影响d_loss的计算。参考了相关知乎文章进行深入解析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

版权归属:

更多关注:

在这里插入图片描述

  • 如果先计算d_loss,在d_loss.backward()后会默认自动释放掉【real_img -> G -> fake_img -> D】这个计算图,但是在执行g_loss.backward()时需要【real_img -> G -> fake_img】这一段的计算图,所以会报告retain graph的错误,解决办法:d_loss.backward(retain_graph=True),或者在计算d_loss时,使用fake_img.detach(),这样在d_loss.backward()时只会释放【fake_img -> D】这段计算图,不会释放【real_img -> G -> fake_img】这段计算图,进而影响g_loss.backward();
  • 如果先计算g_los
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值