TensorBoardX add_image()输出图片与torchvision.transforms.Normalize()标准化需要注意的地方

本文介绍了在使用TensorBoardX的add_image()输出图片时应注意的事项,包括label_name的唯一性、图像维度和值域范围。同时,详细讨论了torchvision.transforms.Normalize()在图像标准化过程中的作用,指出其会将图像值域转换到[-1, 1],并提供了相关转换的公式。" 127674151,8086594,YOLOv5改进:添加SE注意力机制,"['目标检测', '深度学习', '计算机视觉', '神经网络', 'YOLO']
摘要由CSDN通过智能技术生成

TensorBoardX add_image()输出图片与torchvision.transforms.Normalize()标准化

版权归属:

更多关注:

1、TensorBoardX add_image()输出图片需要注意的地方

pytorch中调用TensorBoardX显示图片的方法如下:

from tensorboardX import SummaryWriter

writer = SummaryWriter(log_dir)
# display image
writer.add_image('label_name', img, global_step=total_step)

首先,label_name必须是一个唯一的名字,特别需要注意的是防止与add_scale()中的名字重复,这样子会出现莫名的错误;

其次,参数img可以是numpy or torch.Tensor,需是一张图像的三维矩阵,格式是[C, H, W]。如果是 torch.Tensor时,通常是选择batch中的一张图片img =

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值