深度学习
chanhal
我就是我
展开
-
对抗神经网络GAN中d_loss g_loss两种更新参数的图解释
如果先计算d_loss,在d_loss.backward()后会默认自动释放掉【real_img -> G -> fake_img -> D】这个计算图,但是在执行g_loss.backward()时需要【real_img -> G -> fake_img】这一段的计算图,所以会报告retain graph的错误,解决办法:g_loss.backward(reta...原创 2019-11-07 17:14:29 · 9914 阅读 · 1 评论 -
Pytorch中的bug调试记录(持续跟新)
discriminator loss始终是一个常数,没有随着迭代次数的增加而更新将disciminator loss中的各个分量打印出来,查看原因。最后发现是因为netD输出的是经过sigmoid激活后的值,而在使用criterion是却采用了BCEWithLogitsLoss...原创 2019-11-04 11:09:22 · 317 阅读 · 0 评论 -
TensorBoardX add_image()输出图片与torchvision.transforms.Normalize()标准化需要注意的地方
TensorBoardX add_image()输出图片与torchvision.transforms.Normalize()标准化版权归属:https://blog.csdn.net/halchanchanhal@outlook.com更多关注:https://github.com/chanhalhttps://www.zhihu.com/people/chanhal1、Tenso...原创 2019-11-01 14:57:47 · 7798 阅读 · 2 评论 -
深度学习任务之概念解释
图像分类(classification)图像分类这一类问题常用与区分不同的物品,图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题。它是视觉方向的其中一个核心,实际应用广泛。特点:一张图片被赋予一个类别标签目标检测(object detection)图像分类是将图像划分为单个类别,通常对应于图像中最突出的物体。但是现实世界的很多图片通常包含不只一个物体,此时如果使...原创 2019-09-21 08:45:34 · 894 阅读 · 0 评论