基础——算法

五大算法来自于这里

分治算法

分而治之:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

分治法在每一层递归上都有三个步骤:

step1 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;

step2 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题

step3 合并:将各个子问题的解合并为原问题的解。

其中最后一步,合并,是分治算法的特点。一般的用动态规划就好。

动态规划

特点:子问题的解有重叠部分,中间结果可以cache。逆推。
keys: 状态变量,中间结果,转移方程

动态规划在每一层递归上都有两个步骤:

step1 判断是否到边界

step2 状态转移方程

模板:

ArrayList<ArrayList<T>> totalResult \\全局变量

void DP(map, intermediateResult, currentState){
if(currentState==边界){
   新变量 = new(intermediateResult) \\for safety
  totalResult.add(  新变量)
  }
 else{
  //自定义操作.....
 intermediateResult.add()
 DP(map, intermediateResult, NextState)
 intermediateResult.remove() //如果求全集,就不remove
 //自定义操作....
 }
}

贪心算法

特点: 贪心法一般是来求解最优问题的,而且他们其实都是在对问题的状态空间树进行搜索,在这个状态空间树中搜索最佳的路径以便求出最优策略。而贪心法是从上到下只进行深度搜索的,它的代价取决于子问题的数目,也就是树的高度,每次在当前问题的状态上作出的选择都是1,也就是说,它其实是不进行广度搜索的,这也造成了它的一个缺点:它得出的解不一定是最优解,很有可能是近似最优解。

回溯

https://segmentfault.com/a/1190000006121957
特点:在状态空间树进行先深度搜索,再广度搜索
key: 决策函数
模板:

全局变量 finalResult;
void backTracking(intermediateResult, state){
if(叶子节点)
    return ;
if(intermediateResult满足决策函数){
    finalResult.add(intermediateResult)
    return finalResult;
}
for(所有路径){//广度搜索
 backTracking(intermediateResult,nextState);//深度搜索
}
return ;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值