TensorFlow2.0简介和线性回归

简介

废弃清除了1.0版本的多数API,使用了高级核心API,tf.Keras。
Eager模式,代码直接运行,直观调试。
tf.GradientTape
求解梯度,自定义训练逻辑。

tf.data 加载图片数据和结构化数据
tf.fuction 自动图运算

TensorFlow2.0版本安装

Miniconda是最小的conda安装环境。

线性回归:y = ax + b

# -*- coding: UTF-8 -*-    
# Author: LGD
# FileName: test
# DateTime: 2020/10/20 17:00 
# SoftWare: PyCharm
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf

# 线性规划 f(x)=ax+b
data = pd.read_csv("Income1.csv")

print(data)

# 画散点图,参数一x轴;参数二y轴
plt.scatter(data.Education, data.Income)
plt.show()

# 预测目标与损失函数
# 预测值与损失值之间的误差最小,如何定义最小误差
# 使用均方差来定义损失函数
# 找到合适的a,b使均方差最小
# 使用梯度下降算法来做优化,找到合适的a,b

x = data.Education
y = data.Income
print(x, y)
# 一个顺序化模型
model = tf.keras.Sequential()
# 初始化模型,添加层, 输入维度是1, 输出维度也是1
model.add(tf.keras.layers.Dense(1, input_shape=(1,)))
model.summary()  # ax + b

# 编译模型,或者叫着配置模型
model.compile(
    optimizer='adam',  # 优化方法,沿着梯度下降优化,此方法默认学习速率0.01
    loss='mse'  # 损失函数,使用均方差优化,‘mse’

)

# 训练
history = model.fit(x, y, epochs=5000)
print(history)

# 预测
print(history.predict(x))
print(history.predict(pd.Series([20])))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hong_Youth

您的鼓励将是我创作的动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值