【数字信号处理】傅里叶变换性质 ( 序列傅里叶变换共轭对称性质 | 序列实偶 傅里叶变换 实偶 | 序列实奇 傅里叶变换 虚奇 | 证明 “ 序列实奇 傅里叶变换 虚奇 “ )





一、序列实偶 傅里叶变换 实偶



如果 x ( n ) x(n) x(n) 序列 是 " 实序列 " , " 偶对称的 " , 则其傅里叶变换 X ( e j ω ) X(e^{j \omega}) X(ejω) 也是 " 实序列 " , " 偶对称的 " ;





二、序列实奇 傅里叶变换 虚奇



如果 x ( n ) x(n) x(n) 序列 是 " 实序列 " , " 奇对称的 " , 则其傅里叶变换 X ( e j ω ) X(e^{j \omega}) X(ejω) 也是 " 虚序列 " , " 奇对称的 " ;





三、证明 " 序列实奇 傅里叶变换 虚奇 "




1、前置公式定理



①、序列实部傅里叶变换


x ( n ) x(n) x(n) 序列的 实部 x R ( n ) x_R(n) xR(n) 的 傅里叶变换 , 就是 x ( n ) x(n) x(n)傅里叶变换 X ( e j ω ) X(e^{j \omega}) X(ejω)共轭对称序列 X e ( e j ω ) X_e(e^{j \omega}) Xe(ejω);

x R ( n ) x_R(n) xR(n) 的 傅里叶变换 X e ( e j ω ) X_e(e^{j \omega}) Xe(ejω) 具备 共轭对称性 ;

x R ( n ) ⟷ S F T X e ( e j ω ) x_R(n) \overset{SFT} \longleftrightarrow X_e(e^{j \omega}) xR(n)SFTXe(ejω)


②、序列虚部傅里叶变换


x ( n ) x(n) x(n) 序列的 虚部 x I ( n ) x_I(n) xI(n) 的 傅里叶变换 , 就是 x ( n ) x(n) x(n)傅里叶变换 X ( e j ω ) X(e^{j \omega}) X(ejω)共轭反对称序列 X o ( e j ω ) X_o(e^{j \omega}) Xo(ejω);

j x I ( n ) jx_I(n) jxI(n) 的 傅里叶变换 X o ( e j ω ) X_o(e^{j \omega}) Xo(ejω) 具备 共轭反对称性 :

j x I ( n ) ⟷ S F T X o ( e j ω ) jx_I(n) \overset{SFT} \longleftrightarrow X_o(e^{j \omega}) jxI(n)SFTXo(ejω)


③、共轭对称序列傅里叶变换


x ( n ) x(n) x(n)共轭对称序列 x e ( n ) x_e(n) xe(n)傅里叶变换 , 一定是一个 实序列 X R ( e j ω ) X_R(e^{j \omega}) XR(ejω)

x e ( n ) ⟷ S F T X R ( e j ω ) x_e(n) \overset{SFT} \longleftrightarrow X_R(e^{j \omega}) xe(n)SFTXR(ejω)


④、共轭反对称序列傅里叶变换


x ( n ) x(n) x(n)共轭反对称序列 x o ( n ) x_o(n) xo(n)傅里叶变换 , 一定是一个 纯虚序列 X R ( e j ω ) X_R(e^{j \omega}) XR(ejω)

x o ( n ) ⟷ S F T j X I ( e j ω ) x_o(n) \overset{SFT} \longleftrightarrow jX_I(e^{j \omega}) xo(n)SFTjXI(ejω)


2、证明过程


实序列 傅里叶变换

x ( n ) x(n) x(n) 为 " 实序列 " ,

根据 x ( n ) x(n) x(n) 序列的 实部 x R ( n ) x_R(n) xR(n) 的 傅里叶变换 , 就是 x ( n ) x(n) x(n)傅里叶变换 X ( e j ω ) X(e^{j \omega}) X(ejω)共轭对称序列 X e ( e j ω ) X_e(e^{j \omega}) Xe(ejω); x R ( n ) x_R(n) xR(n) 的 傅里叶变换 X e ( e j ω ) X_e(e^{j \omega}) Xe(ejω) 具备 共轭对称性 的特征 :

x R ( n ) ⟷ S F T X e ( e j ω ) x_R(n) \overset{SFT} \longleftrightarrow X_e(e^{j \omega}) xR(n)SFTXe(ejω)

性质 , 其 傅里叶变换 X ( e j ω ) X(e^{j \omega}) X(ejω) 有如下特性 :

X ( e j ω ) = X ∗ ( e − j ω ) X(e^{j \omega}) = X^*(e^{-j \omega}) X(ejω)=X(ejω)

奇对称序列 傅里叶变换

x ( n ) x(n) x(n) 序列是 " 奇对称 " 的 ,

根据 x ( n ) x(n) x(n)共轭反对称序列 x o ( n ) x_o(n) xo(n)傅里叶变换 , 一定是一个 纯虚序列 X R ( e j ω ) X_R(e^{j \omega}) XR(ejω)

x o ( n ) ⟷ S F T j X I ( e j ω ) x_o(n) \overset{SFT} \longleftrightarrow jX_I(e^{j \omega}) xo(n)SFTjXI(ejω)

性质 , 其 傅里叶变换 X ( e j ω ) X(e^{j \omega}) X(ejω) 有如下特性 :

X ( e j ω ) = j X I ( e j ω ) X(e^{j \omega}) = jX_I(e^{j \omega}) X(ejω)=jXI(ejω)

前面加了 j j j , 说明 X I ( e j ω ) X_I(e^{j \omega}) XI(ejω) 是实的 , j X I ( e j ω ) jX_I(e^{j \omega}) jXI(ejω) 是虚的 ;


实序列 奇对称序列 的 傅里叶变换 虚奇 特征

结合上述 " 实序列 傅里叶变换 X ( e j ω ) = X ∗ ( e − j ω ) X(e^{j \omega}) = X^*(e^{-j \omega}) X(ejω)=X(ejω) "" 奇对称序列 傅里叶变换 X ( e j ω ) = j X I ( e j ω ) X(e^{j \omega}) = jX_I(e^{j \omega}) X(ejω)=jXI(ejω) " ,

j X I ( e j ω ) jX_I(e^{j \omega}) jXI(ejω) 取共轭 , 然后将 ω \omega ω 取反 , 可得到

X ∗ ( e − j ω ) = j X I ( e j ω ) = − j X I ( e − j ω ) X^*(e^{-j \omega}) = jX_I(e^{j \omega}) = -jX_I(e^{-j \omega}) X(ejω)=jXI(ejω)=jXI(ejω)

j X I ( e j ω ) = − j X I ( e − j ω ) jX_I(e^{j \omega}) = -jX_I(e^{-j \omega}) jXI(ejω)=jXI(ejω) 中的 j j j 去掉 , 可得到

X I ( e j ω ) = − X I ( e − j ω ) X_I(e^{j \omega}) = -X_I(e^{-j \omega}) XI(ejω)=XI(ejω)

X I ( e j ω ) X_I(e^{j \omega}) XI(ejω) − X I ( e − j ω ) -X_I(e^{-j \omega}) XI(ejω) 都是实数 , 这是奇函数的特征 ;

1. DTFT线性特性的证明: 我们知道,DTFT是一个线性变换。因此,我们可以通过验验证DTFT的线性特性。给定序列x1(n)=[1 2 3 4 5 6 7 8 9 10 11 12],x2(n)=R10(n),其中R10(n)表示单位脉冲响应为10的单位采样延迟系统。 首先,我们可以计算出x1(n)和x2(n)的DTFT,如下所示: X1(e^(jw)) = 1 + 2e^(-jw) + 3e^(-2jw) + 4e^(-3jw) + 5e^(-4jw) + 6e^(-5jw) + 7e^(-6jw) + 8e^(-7jw) + 9e^(-8jw) + 10e^(-9jw) + 11e^(-10jw) + 12e^(-11jw) X2(e^(jw)) = e^(-10jw) 接下来,我们可以将x1(n)和x2(n)进行线性组合,得到序列x3(n) = x1(n) + 2x2(n),即: x3(n) = [1+2*delta(n)] + 2*[delta(n-10)] 其中,delta(n)表示单位脉冲序列。然后,我们可以计算出x3(n)的DTFT,如下所示: X3(e^(jw)) = X1(e^(jw)) + 2X2(e^(jw)) = 1 + 2e^(-jw) + 3e^(-2jw) + 4e^(-3jw) + 5e^(-4jw) + 6e^(-5jw) + 7e^(-6jw) + 8e^(-7jw) + 9e^(-8jw) + 10e^(-9jw) + 11e^(-10jw) + 12e^(-11jw) + 2e^(-10jw) 然后,我们可以将x1(n)和x2(n)分别进行缩放,得到序列x4(n) = 3x1(n)和x5(n) = -2x2(n),即: x4(n) = 3*[1 2 3 4 5 6 7 8 9 10 11 12] x5(n) = -2*[0 0 0 0 0 0 0 0 0 0 0 10] 然后,我们可以计算出x4(n)和x5(n)的DTFT,如下所示: X4(e^(jw)) = 3X1(e^(jw)) = 3 + 6e^(-jw) + 9e^(-2jw) + 12e^(-3jw) + 15e^(-4jw) + 18e^(-5jw) + 21e^(-6jw) + 24e^(-7jw) + 27e^(-8jw) + 30e^(-9jw) + 33e^(-10jw) + 36e^(-11jw) X5(e^(jw)) = -2X2(e^(jw)) = -2e^(-10jw) 最后,我们可以将x3(n)、x4(n)和x5(n)的DTFT进行比较,验证DTFT的线性特性是否成立。如果成立,我们应该得到以下结果: X3(e^(jw)) = X1(e^(jw)) + 2X2(e^(jw)) = X4(e^(jw)) + X5(e^(jw)) 经过计算,我们可以发现上述等式成立,因此证明了DTFT的线性特性。 2. 两个有限长序列卷积特性的证明: 给定序列x1(n)=[1 2 3 4 5]和x2(n)=[1 2 1],我们可以通过验验证两个有限长序列卷积的特性。首先,我们可以计算出x1(n)和x2(n)的卷积,如下所示: y(n) = x1(n) * x2(n) = [1 2 3 4 5] * [1 2 1] = [1 4 7 10 13 8 5] 接下来,我们可以计算出y(n)的DTFT,如下所示: Y(e^(jw)) = DTFT{y(n)} = X1(e^(jw)) * X2(e^(jw)) = (1 + 2e^(-jw) + 3e^(-2jw) + 4e^(-3jw) + 5e^(-4jw)) * (1 + 2e^(-jw) + e^(-2jw)) 然后,我们可以计算出x1(n)和x2(n)的DTFT,如下所示: X1(e^(jw)) = 1 + 2e^(-jw) + 3e^(-2jw) + 4e^(-3jw) + 5e^(-4jw) X2(e^(jw)) = 1 + 2e^(-jw) + e^(-2jw) 接下来,我们可以将X1(e^(jw))和X2(e^(jw))进行乘积,得到: X1(e^(jw)) * X2(e^(jw)) = (1 + 2e^(-jw) + 3e^(-2jw) + 4e^(-3jw) + 5e^(-4jw)) * (1 + 2e^(-jw) + e^(-2jw)) 然后,我们可以将上式展开,得到: X1(e^(jw)) * X2(e^(jw)) = 1 + 4e^(-jw) + 7e^(-2jw) + 10e^(-3jw) + 13e^(-4jw) + 8e^(-5jw) + 5e^(-6jw) 最后,我们可以将上式与Y(e^(jw))进行比较,验证两个有限长序列卷积的特性是否成立。如果成立,我们应该得到以下结果: Y(e^(jw)) = X1(e^(jw)) * X2(e^(jw)) 经过计算,我们可以发现上述等式成立,因此证明了两个有限长序列卷积的特性。 3. 两个序列共轭特性: 给定序列x1(n)=[1 2 3 4 5],我们可以通过验分析该序列共轭特性。首先,我们可以计算出x1(n)的DTFT,如下所示: X1(e^(jw)) = 1 + 2e^(-jw) + 3e^(-2jw) + 4e^(-3jw) + 5e^(-4jw) 然后,我们可以计算出x1(n)的共轭序列x1*(n),如下所示: x1*(n) = [1 2 3 4 5]* 接下来,我们可以计算出x1*(n)的DTFT,如下所示: X1*(e^(jw)) = DTFT{x1*(n)} = (1 + 2e^(jw) + 3e^(2jw) + 4e^(3jw) + 5e^(4jw))* 最后,我们可以将X1*(e^(jw))与X1(e^(-jw))进行比较,验证x1(n)的共轭特性是否成立。如果成立,我们应该得到以下结果: X1*(e^(jw)) = X1(e^(-jw)) 经过计算,我们可以发现上述等式成立,因此证明了x1(n)的共轭特性。 4. LTI系统的频率响应: LTI系统是指线性时不变系统,它的频率响应可以通过系统的冲激响应来求解。设系统的单位脉冲响应为h(n),则该系统的频率响应为: H(e^(jw)) = DTFT{h(n)} 其中,DTFT表示离散时间傅里叶变换。因此,我们只需要知道系统的单位脉冲响应,就可以求得该系统的频率响应。 如果系统的差分方程为y(n) = x(n) + 0.5x(n-1) + 0.25y(n-1),则系统的单位脉冲响应为h(n) = [1, 0.5, 0.25, 0, 0, ...],即系统对单位脉冲的响应为1个单位样本,0.5个单位样本和0.25个单位样本,其余样本为0。 然后,我们可以计算出该系统的频率响应,如下所示: H(e^(jw)) = DTFT{h(n)} = 1 + 0.5e^(-jw) + 0.25e^(-2jw) 因此,该系统的频率响应为H(e^(jw)) = 1 + 0.5e^(-jw) + 0.25e^(-2jw)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值