阿里云天池task1学习笔记

本文介绍了如何使用NumPy的np.meshgrid()函数创建二维坐标网格,以及np.ravel()函数降维操作。通过实例演示了如何在二维坐标系中生成所有可能的点坐标,并强调了这些函数在数据处理中的实用价值。
摘要由CSDN通过智能技术生成

小知识点:

np.meshgrid()

二维坐标系中,X轴可以取三个值1,2,3, Y轴可以取三个值7,8, 请问可以获得多少个点的坐标?
显而易见是6个:
(1,7)(2,7)(3,7)
(1,8)(2,8)(3,8)


import numpy as np
# 坐标向量
a = np.array([1,2,3])
# 坐标向量
b = np.array([7,8])
# 从坐标向量中返回坐标矩阵
# 返回list,有两个元素,第一个元素是X轴的取值,第二个元素是Y轴的取值
res = np.meshgrid(a,b)
#返回结果: [array([ [1,2,3] [1,2,3] ]), array([ [7,7,7] [8,8,8] ])]

来源:https://blog.csdn.net/littlehaes/article/details/83543459

根据array的结果看数据 shape
根据[ ]层数确定有几维

假设当前为三维

x.shape[2]=2,即最内层有2个元素。

x.shape[0]=7,即最外层有7个元素。

来源:https://blog.csdn.net/qq_24252751/article/details/103315196

np.ravel()

将多维数组降位一维。具体,可自己尝试。

来源:https://www.cnblogs.com/hechangchun/p/9843864.html

predict_proba

返回的是一个 n 行 k 列的数组, 第 i 行 第 j 列上的数值是模型预测 第 i 个预测样本为某个标签的概率,并且每一行的概率和为1。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值