自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 资源 (1)
  • 问答 (1)
  • 收藏
  • 关注

原创 龙珠深度学习训练营——基于人脸的常见表情识别

目录基于人脸的常见表情识别数据获取数据处理train+pre基于人脸的常见表情识别数据获取数据由项目提供的一个爬虫工具获取下载后运行python image_downloader_gui.py,选择搜索引擎、关键词和数量就可以自动获取保存搜索出来的图片,如下我们搜索嘟嘴的图片保存到文件如下所示数据处理我们获取的数据可以看到有许多都是不能用的,最基础的就是要确保图片属于人脸,这里我们用到了OpenCV自带的人脸的Haar特征分类器下面我们加载这个分类器cascade_path = './

2021-02-12 22:18:47 564

原创 天池龙珠计划——机器学习训练营 Task4

目录前言快来一起挖掘幸福感赛前预览数据可视化数据处理模型+训练前言龙珠机器学习训练营的第四个阶段了,这一部分主要是赛事实战,我这里也主要采用了前面所学到的一些模型来解决这次比赛。快来一起挖掘幸福感赛前预览首先我们看一下比赛的大致要求和数据提供这次比赛大概是通过问卷中的问题来获取一些人的个人情况等,从中提取重要因素用来判断幸福感。数据可视化import pandas as pdimport matplotlib.pyplot as plt#显示所有列pd.set_option('di

2021-02-07 19:58:16 558

原创 天池龙珠计划——机器学习训练营 Task3

目录前言LightGBM介绍实战前言笔记,记录龙珠机器学习训练营Task3,关于lightgbm的学习。与前两个阶段一样,主要重心放在实际应用上,毕竟学习这个主要是用于一些比赛。LightGBM介绍LightGBM是2017年由微软推出的可扩展机器学习系统,是微软旗下DMKT的一个开源项目,由2014年首届阿里巴巴大数据竞赛获胜者之一柯国霖老师带领开发。它是一款基于GBDT(梯度提升决策树)算法的分布式梯度提升框架,为了满足缩短模型计算时间的需求,LightGBM的设计思路主要集中在减小数据对内存与

2021-02-06 20:43:43 556

原创 天池龙珠计划——机器学习训练营 Task2

目录前言XGBoost介绍实战基于天气数据集的XGBoost分类实战前言笔记,记录龙珠机器学习训练营的第二阶段,关于xgboost的学习XGBoost介绍xgboost有听说过,也在kaggle上经常看到有人用。关于原理这方面,网络上大都只有应用的资料,关于原理的很少,通俗来讲,xgboost属于梯度提升树(GBDT)模型的范畴,GBDT的基本思想是让n层模型去拟合n-1层模型的偏差,从而不断使加法模型的偏差降低。相比于GBDT,xgboost做了一些改进,从而在效果和性能上有明显的提升。本节我们的

2021-02-06 18:36:39 304

原创 天池龙珠计划——机器学习训练营 Task1

目录机器学习算法(一): 基于逻辑回归的分类预测1 逻辑回归的介绍和应用1.1 逻辑回归的介绍机器学习算法(一): 基于逻辑回归的分类预测1 逻辑回归的介绍和应用1.1 逻辑回归的介绍逻辑回归(Logistic regression,简称LR)虽然其中带有"回归"两个字,但逻辑回归其实是一个分类模型,并且广泛应用于各个领域之中。虽然现在深度学习相对于这些传统方法更为火热,但实则这些传统方法由于其独特的优势依然广泛应用于各个领域中。而对于逻辑回归而且,最为突出的两点就是其模型简单和模型的可解释性强。

2021-02-05 16:44:44 364 1

原创 猫狗大战——pytorch+resnet18

cats vs dogs——resnet18数据Nettrain+test数据这是一个在kaggle上的竞赛,原数据提供了25000张图片,本文所使用的数据集来自其中train的8000张,包括4000张猫和4000张狗#将数据导入data_dir = 'E:\\code\\Python\\catanddog\\train'test_dir = 'E:\\code\\Python\\catanddog\\test'class Data(data.Dataset): def __ini

2021-01-26 18:04:41 1609

原创 机器学习——fashion_mnist

机器学习——fashion_mnist这里写目录标题机器学习——fashion_mnist数据PCAmodel+predicted数据本实验使用Fashion-MNIST数据集,包括t-shirt(T恤),trouser(牛仔裤),pullover(套衫)等在内的10个类别的图像共计70000张。#读取训练集、测试集的数据和标签train_images, train_labels = load_mnist(r"E:\code\jupyter\fashion-mnist",kind='train')

2021-01-24 20:22:05 640 3

原创 人脸识别——PCA降维

人脸识别——PCA降维人脸识别——PCA降维人脸识别——PCA降维数据PCAmodel+predicted数据本实验采集82名同学每人三张共计246张图片,两张用于训练,一张用于测试PCApath1 = "E:\\code\\jupyter\\facedata" #文件夹目录files1 = os.listdir(path1) #得到文件夹下的所有文件名称labels = []for file in files1: #遍历文件夹 labels.append(file) #每个文件的文

2021-01-24 19:30:51 1920 3

原创 MLP分类——MNIST(手写数字识别)

MLP分类——MNIST(手写数字识别)目录MLP分类——MNIST(手写数字识别)数据集model+predicted数据集#导入数据X_train = load_data("train-images-idx3-ubyte.gz") / 255.0X_test = load_data("t10k-images-idx3-ubyte.gz") / 255.0y_train = load_data("train-labels-idx1-ubyte.gz",True).reshape(-1)y_t

2021-01-24 18:06:13 2239 2

原创 男声女声分类之SVM

男生女生分类之svm目录男生女生分类之svmsvc数据模型构建预测svc1、支撑向量机SVM是一种非常重要和广泛的机器学习算法,它的算法出发点是尽可能找到最优的决策边界,使得模型的泛化能力尽可能地好,因此SVM对未来数据的预测也是更加准确的。2、SVM既可以解决分类问题,又可以解决回归问题,原理整体相似,不过也稍有不同。本次实验属于二分类问题,我们选择svm.SVC模型进行分类预测。数据#导入数据train = pd.read_csv("voice_train.csv")test = pd

2021-01-19 23:25:00 871

原创 北京房价预测——线性回归

线性回归预测北京房价数据准备数据清洗可视化构建模型并预测数据准备数据来源:kaggle链接官方提供的数据集,来源自链家网站2011-2017年的交易信息数据清洗#首先将数据导入,因为格式的问题,此处选择encoding = 'iso-8859-1'train = pd.read_csv('beijing_house_train.csv', encoding = 'iso-8859-1')#训练集test = pd.read_csv('beijing_house_test.csv', encod

2021-01-18 23:23:52 3330 10

c++作业.docx

浙江理工大学C++期末复习题(附答案),仅限参考,

2019-06-24

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除