Datawhale AI 夏令营(NLP方向)

一、前置知识

Transformer:Transformer模型是一种基于自注意力机制(Self-Attention Mechanism)的深度学习模型,最初由Google的研究团队在2017年提出,主要用于处理自然语言处理(NLP)任务,如机器翻译、文本生成、语言理解等。Transformer模型的出现彻底改变了NLP领域的格局,其重要性堪比计算机视觉领域的卷积神经网络(CNN)。

二、关于task3的增分建议

a.数据清洗

b.数据回译(用deepl来进行回译)

c.加入学习周期衰减公式,让学习率与模型训练自动相适应

d.尽量N值大,batch_size适当大小即可

e.可以将训练好的旧模型多迭代,有助于提分

三、个人感悟

这期的datawhale AI 夏令营结束了,这段时间收获满满,学习到了很多新知识,认识到了很多很厉害学长,非常感谢此次夏令营给予的平台与机会。在这期间为了不断提高模型的得分,不停地尝试各种方案,锻炼了自己的学习能力和磨练了自己的意志,再次在这里非常地感谢datawhale AI 夏令营。这是个不错的夏令营,希望下次还有机会继续在里面磨练自己。最后,送自己一句话,路漫漫其修远兮,吾将上下而求索!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值