一、前置知识
Transformer:Transformer模型是一种基于自注意力机制(Self-Attention Mechanism)的深度学习模型,最初由Google的研究团队在2017年提出,主要用于处理自然语言处理(NLP)任务,如机器翻译、文本生成、语言理解等。Transformer模型的出现彻底改变了NLP领域的格局,其重要性堪比计算机视觉领域的卷积神经网络(CNN)。
二、关于task3的增分建议
a.数据清洗
b.数据回译(用deepl来进行回译)
c.加入学习周期衰减公式,让学习率与模型训练自动相适应
d.尽量N值大,batch_size适当大小即可
e.可以将训练好的旧模型多迭代,有助于提分
三、个人感悟
这期的datawhale AI 夏令营结束了,这段时间收获满满,学习到了很多新知识,认识到了很多很厉害学长,非常感谢此次夏令营给予的平台与机会。在这期间为了不断提高模型的得分,不停地尝试各种方案,锻炼了自己的学习能力和磨练了自己的意志,再次在这里非常地感谢datawhale AI 夏令营。这是个不错的夏令营,希望下次还有机会继续在里面磨练自己。最后,送自己一句话,路漫漫其修远兮,吾将上下而求索!!