一、本次task3操作的多种方案(个人总结)
1.lightgbm模型+特征优化(得分大概子273左右,可以通过调整lightgbm的参数来调整)
注:主要改变lightgbm的学习效率和迭代次数,这两者参数的改变对模型影响大。再接着可调整叶子节点数以及自己可以加个max_depth来调整树的最大深度
2.模型融合+特征优化(得分在250左右)
这里可以适当调整迭代次数来是得分更好看,可将迭代次数更改为2k这样得到的分数大概在235左右。如果要再加分,可以适当调整三个模型的参数来加分,调整策略同第一条一样
3.深度学习方案
但是此得分目前不堪500多,建议不尝试,目前个人没找到比较好的参数来使得分更好看
个人误点:在特征优化中,容易爆内存,因此需要利用GPU32来跑模型,可避免此情况,如果自己有相应好的设备也可以利用自己的GPU本地跑,或许会有更高的得分。
二、个人感悟
前前后后测试这个机器学习的模型不下10次,查阅了很多资料,翻阅了很多大佬的经验,以及求问了群上很多大佬的经验。此次经历丰厚了我的知识,锻炼了我的心态,也让我见识到了很多厉害的人。感谢此次平台给予的机会,让作为大一的我学到了如此多的新知识,认识到了很多新朋友。再次,非常感谢Datawhale AI 夏令营,感谢你们的辛苦付出和努力,让我们这群学习者相聚一起共同学习!!