题目描述
如果A,B是C的父母亲,则A,B是C的parent,C是A,B的child,如果A,B是C的(外)祖父,祖母,则A,B是C的grandparent,C是A,B的grandchild,如果A,B是C的(外)曾祖父,曾祖母,则A,B是C的great-grandparent,C是A,B的great-grandchild,之后再多一辈,则在关系上加一个great-。
输入描述:
输入包含多组测试用例,每组用例首先包含2个整数n(0<=n<=26)和m(0<m<50), 分别表示有n个亲属关系和m个问题, 然后接下来是n行的形式如ABC的字符串,表示A的父母亲分别是B和C,如果A的父母亲信息不全,则用-代替,例如A-C,再然后是m行形式如FA的字符串,表示询问F和A的关系。
输出描述:
如果询问的2个人是直系亲属,请按题目描述输出2者的关系,如果没有直系关系,请输出-。 具体含义和输出格式参见样例.
示例1
输入
复制
3 2 ABC CDE EFG FA BE
输出
复制
great-grandparent -
思路
注意这道题的“直系”亲属
根据题中输入样例画出的图如下,其中,B和E就不是直系亲属。所以不能用以下方法来解这道题:
- 先找出来两个节点的根节点,根据根节点是否相等判断是否为直系(×)
- 再根据到根节点的距离决定辈分关系
正确做法:对于样例(FA)
- 找F的父母节点,直到=A或者到了根节点为止(程序中体现为child=-1)
- 在这个过程中辈分计数
这次没有递归,Find函数用的循环,递归的return实在是没搞清楚
#include<iostream>
using namespace std;
int child[90];
char s[4];
void Init(){
for(int i=0;i<30;i++){
child[i]=-1;
}
}
int Find(int i,int j){ //找i是j的第几代长辈
int res=1;
while(child[i]!=-1){
if(child[i]==j){ //j是i的直系子孙
return res;
}
res++;
i=child[i];
}
return -1;
}
int main(){
int n,m;
while(scanf("%d%d",&n,&m)!=EOF){
Init();
while(n--){
scanf("%s",s);
child[s[1]-'A']=child[s[2]-'A']=s[0]-'A'; //建立族谱
// child[s[2]-'A']=s[2]-'A'; //相当于初始化了
}
while(m--){
scanf("%s",s);
int x=Find(s[0]-'A',s[1]-'A');
if(x==1){
printf("parent\n");
}
else if(x==2){
printf("grandparent\n");
}
else if(x>2){
x-=2;
while(x--){
printf("great-");
}
printf("grandparent\n");
}
else if(x==-1){
int y=Find(s[1]-'A',s[0]-'A');
if(y==1){
printf("child\n");
}
else if(y==2){
printf("grandchild\n");
}
else if(y>2){
y-=2;
while(y--){
printf("great-");
}
printf("grandchild\n");
}
else if(y==-1){
printf("-\n");
}
}
}
}
return 0;
}