杜哈梅尔相似定理

杜哈梅尔(Duhamel)相似定理用于求解不均匀受热引起的热应力问题,通过将其转化为等温弹性力学问题,进而求解。
根据热应力基础概念,正应力方程可整理成以下形式:
{ σ x = 2 G ε x + λ e − β t σ y = 2 G ε y + λ e − β t σ z = 2 G ε y + λ e − β t (1) \begin{cases}\sigma_x=2G\varepsilon_x+\lambda e -\beta t\\[1.5ex] \sigma_y=2G\varepsilon_y+\lambda e -\beta t\\[1.5ex] \sigma_z=2G\varepsilon_y+\lambda e -\beta t \end{cases}\tag1 σx=2Gεx+λeβtσy=2Gεy+λeβtσz=2Gεy+λeβt(1)

式(1)可以分为以下两部分:
{ σ x = σ x ′ − β t σ y = σ y ′ − β t σ z = σ z ′ − β t (2) \begin{cases} \sigma_x=\sigma^{'}_x-\beta t\\ \sigma_y=\sigma^{'}_y-\beta t\\ \sigma_z=\sigma^{'}_z-\beta t\\ \end{cases}\tag2 σx=σxβtσy=σyβtσz=σzβt(2)

其中, σ x ′ \sigma^{'}_x σx σ y ′ \sigma^{'}_y σy σ z ′ \sigma^{'}_z σz 是应变产生的正应力,可整理为:
{ σ x ′ = 2 G ε x + λ e σ y ′ = 2 G ε y + λ e σ z ′ = 2 G ε y + λ e (3) \begin{cases}\sigma^{'}_x=2G\varepsilon_x+\lambda e \\[1.5ex] \sigma^{'}_y=2G\varepsilon_y+\lambda e \\[1.5ex] \sigma^{'}_z=2G\varepsilon_y+\lambda e \end{cases}\tag3 σx=2Gεx+λeσy=2Gεy+λeσz=2Gεy+λe(3)

剪应力则保持不变:

{ τ x y = τ x y ′ = G γ x y = E 2 ( 1 + μ ) γ x y τ y z = τ x y ′ = G γ y z = E 2 ( 1 + μ ) γ y z τ z x = τ x y ′ = G γ z x = E 2 ( 1 + μ ) γ z x (4) \begin{cases} \tau_{xy}=\tau^{'}_{xy}=G\gamma_{xy}=\frac E{2(1+\mu)}\gamma_{xy}\\[1.5ex] \tau_{yz}=\tau^{'}_{xy}=G\gamma_{yz}=\frac E{2(1+\mu)}\gamma_{yz}\\[1.5ex] \tau_{zx}=\tau^{'}_{xy}=G\gamma_{zx}=\frac E{2(1+\mu)}\gamma_{zx} \end{cases}\tag4 τxy=τxy=Gγxy=2(1+μ)Eγxyτyz=τxy=Gγyz=2(1+μ)Eγyzτzx=τxy=Gγzx=2(1+μ)Eγzx(4)

当不计体积力时,即:
∇ p = [ ∂ σ x ∂ x + ∂ τ y x ∂ y + ∂ τ z x ∂ z ∂ τ x y ∂ x + σ τ y ∂ y + ∂ τ z y ∂ z ∂ τ x z ∂ x + ∂ τ y z ∂ y + ∂ σ z ∂ z ] = 0 (5) \nabla\mathbf p = \left[\begin{matrix} \frac{\partial\sigma_{x}}{\partial x}+\frac{\partial\tau_{yx}}{\partial y}+\frac{\partial\tau_{zx}}{\partial z} \\[1.5ex] \frac{\partial\tau_{xy}}{\partial x}+\frac{\sigma\tau_{y}}{\partial y}+\frac{\partial\tau_{zy}}{\partial z} \\[1.5ex] \frac{\partial\tau_{xz}}{\partial x}+\frac{\partial\tau_{yz}}{\partial y}+\frac{\partial\sigma_{z}}{\partial z} \end{matrix}\right]=\mathbf0 \tag{5} p=xσx+yτyx+zτzxxτxy+yστy+zτzyxτxz+yτyz+zσz=0(5)

将式(3)、式(4)代入式(5) 中,可得:
∇ p = [ ∂ σ x ′ ∂ x + ∂ τ y x ′ ∂ y + ∂ τ z x ′ ∂ z − β ∂ t ∂ x ∂ τ x y ′ ∂ x + σ τ y ′ ∂ y + ∂ τ z y ′ ∂ z − β ∂ t ∂ x ∂ τ x z ′ ∂ x + ∂ τ y z ′ ∂ y + ∂ σ z ′ ∂ z − β ∂ t ∂ x ] = 0 (6) \nabla\mathbf p = \left[\begin{matrix} \frac{\partial\sigma^{'}_{x}}{\partial x}+\frac{\partial\tau^{'}_{yx}}{\partial y}+\frac{\partial\tau^{'}_{zx}}{\partial z}-\beta\frac{\partial t}{\partial x} \\[1.5ex] \frac{\partial\tau_{xy}^{'}}{\partial x}+\frac{\sigma\tau_{y}^{'}}{\partial y}+\frac{\partial\tau_{zy}^{'}}{\partial z}-\beta\frac{\partial t}{\partial x} \\[1.5ex] \frac{\partial\tau^{'}_{xz}}{\partial x}+\frac{\partial\tau_{yz}^{'}}{\partial y}+\frac{\partial\sigma_{z}^{'}}{\partial z}-\beta\frac{\partial t}{\partial x} \end{matrix}\right]=\mathbf0 \tag{6} p=xσx+yτyx+zτzxβxtxτxy+yστy+zτzyβxtxτxz+yτyz+zσzβxt=0(6)

除了必须满足微分平衡方程外,也需要满足边界条件。当忽略表面力(即表面力为零)时:

{ β t l = σ x ′ l + τ y x ′ m + τ z x ′ n β t m = σ y ′ m + τ y x ′ n + τ z x ′ l β t n = σ z ′ n + τ y x ′ l + τ z x ′ m (7) \begin{cases} \beta t l=\sigma^{'}_{x}l+\tau^{'}_{yx}m+\tau^{'}_{zx}n \\[1.5ex] \beta t m=\sigma^{'}_{y}m+\tau^{'}_{yx}n+\tau^{'}_{zx}l \\[1.5ex] \beta t n=\sigma^{'}_{z}n+\tau^{'}_{yx}l+\tau^{'}_{zx}m \end{cases} \tag{7} βtl=σxl+τyxm+τzxnβtm=σym+τyxn+τzxlβtn=σzn+τyxl+τzxm(7)

其中,l、m、n 分别为边界表面在x、y、z方向的法向余弦。通过上式,我们不难看出:

  • 在求解热应力问题时,我们可以将其等效为等温弹性问题;
  • 假定体积力为:( − β ∂ t ∂ x -\beta\frac{\partial t}{\partial x} βxt − β ∂ t ∂ x -\beta\frac{\partial t}{\partial x} βxt − β ∂ t ∂ x -\beta\frac{\partial t}{\partial x} βxt
  • 假定表面力为:( β t l \beta t l βtl β t m \beta t m βtm β t n \beta t n βtn
  • 求解该等温弹性问题下的应力 σ x ′ \sigma^{'}_x σx σ y ′ \sigma^{'}_y σy σ z ′ 、 τ x y ′ 、 τ y z ′ 、 τ z x ′ \sigma^{'}_z、\tau^{'}_{xy}、\tau^{'}_{yz}、\tau^{'}_{zx} σzτxyτyzτzx;
  • 对正应力分量 σ x ′ \sigma^{'}_x σx σ y ′ \sigma^{'}_y σy σ z ′ \sigma^{'}_z σz叠加上该点的流体静压 − β t -\beta t βt

通过以上步骤即可得出物体不均匀受热引起的热应力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值