方根法公式_偏微分方程笔记(11)——分离变量法初探

本文详细介绍了偏微分方程中的一维和二维情形下的分离变量法,通过实例和习题阐述了解决波动方程和热传导问题的步骤,强调了Fourier级数和正交函数系在求解过程中的应用,并探讨了特征值为正的原因。此外,还提及了非齐次问题的处理和Duhamel原理。
摘要由CSDN通过智能技术生成

dd3fcaeff5c1fe23b8f3bb91aab5570a.png

参考书:

(1)W. A. Strauss, Partial Differential Equations An Introduction, 2nd edition.
(2)L. C. Evans, Partial Differential Equations, 2nd edition.
(3)A.C.沙玛耶夫, 《偏微分方程习题集》, 郭思旭译.

我们先回顾求初边值问题的波动方程的步骤. 为了简单起见, 仅对Dirichlet初值条件问题求解, 而Robin条件、Neumann条件可以参考Strauss的偏微分方程书. 重要的是掌握方法!

这部分涉及的计算非常多,一定要多算!!!!!!!!

目录

  1. 一维情形的分离变量法
  2. 二维情形的分离变量法

1 一维情形的分离变量法

例1.1 [波动方程]考虑下面问题:

Step 1. 考虑如下形式的变量分离形式:

首先我们找出尽可能多的变量分离解. (显然我们不希望搞出
这样没意义). 把这个式子代入原问题, 可得

后面取

是因为
是关于t的函数, 而
是关于x的函数, 它们相等, 则必为常数.
事实上,
我们在稍后会指出. 记
则有如下ODE:

它们的通解为

这里

为常数.

Step 2. 把边界条件

代进
可以得到

我们对零解不感兴趣, 则

为非零解, 因此

是特解. 于是我们找到无限多个分离变量形式的解, 为

这里

是常数. 把它们叠加起来, 有

Step 3. 代入初始条件, 有

这个形式非常的特殊, 可以想到Fourier展开. 能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值