Pycharm 配置GPU环境

前提:安装anaconda和pycharm之后,之前是使用CPU来跑,现在想配置一下GPU环境

查看电脑NVIDIA适合的CUDA版本
在这里插入图片描述
注册账号,注册一下就好。

下载CUDA11.6版本
官网:https://developer.nvidia.com/cuda-downloads
默认安装在C盘
在这里插入图片描述
在这里插入图片描述
等待安装完成即可。

下载CUDNN
官网:https://developer.nvidia.com/cudnn
填写调查问卷 提交
在这里插入图片描述
解压压缩包后
在这里插入图片描述
把解压后的三个文件夹里的全部复制到CUDA v11.7对应的文件夹里
在这里插入图片描述

编辑环境变量
系统属性→ 高级 →环境变量→系统变量→path→新建。

在这里插入图片描述
增加上述四个路径。

重新启动电脑。

验证是否安装成功
打开cmd
使用 nvcc -V 验证是否安装成功,看到如下信息说明安装成功
在这里插入图片描述
把C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\extras\demo_suite路径下的bandwidthTest和deviceQuery拖入cmd中(因为出现闪退)
在这里插入图片描述
在这里插入图片描述
安装成功。

pycharm已有base环境装GPU
pip install tensorflow-gpu==2.6.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

在pycharm配置环境时,出现了一个适合的tensorflow-gpu版本,就选择了gpu2.6.0版本。

也可以对照配置GPU环境tensorflow对应表
网址:https://tensorflow.google.cn/install/source_windows#install_gpu_support_optional
在这里插入图片描述

### 如何在 PyCharm配置和调用 GPU 加速 TensorFlow/PyTorch 为了实现 GPU 加速,需要完成以下几个方面的设置: #### 1. 安装 NVIDIA 驱动程序和 CUDA 工具包 确保计算机上已安装最新的 NVIDIA 显卡驱动程序以及兼容的 CUDA 和 cuDNN 版本。这些工具对于启用 GPU 支持至关重要[^1]。 #### 2. 安装支持 GPU 的框架版本 - **TensorFlow**: 使用 `pip` 或者 `conda` 来安装特定于 GPU 的 TensorFlow 版本。例如: ```bash pip install tensorflow-gpu==2.4.0 ``` 如果使用 Conda,则可以执行以下命令来创建环境并安装所需的库[^3]: ```bash conda create --name tensorflow python=3.8 conda activate tensorflow pip install tensorflow-gpu==2.4.0 ``` - **PyTorch**: 参考官方文档中的指令选择合适的版本进行安装[^2]。例如: ```bash pip install torch===1.7.1 torchvision===0.8.2 torchaudio===0.7.2 -f https://download.pytorch.org/whl/cu110/torch_stable.html ``` #### 3. 设置 PyCharm 环境 - 打开 PyCharm 并进入项目设置 (`File -> Settings`)。 - 导航至 `Project: [Your Project Name] -> Python Interpreter`。 - 添加或切换到已经配置好的虚拟环境或者 Conda 环境,其中包含了上述安装的支持 GPU 的库[^4]。 #### 4. 编写代码验证 GPU 是否可用 编写简单的脚本来测试 GPU 是否被成功识别。 ##### 对于 TensorFlow: ```python import tensorflow as tf print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) if tf.test.is_gpu_available(): print("GPU is available and configured.") else: print("No GPU detected or not properly set up.") ``` ##### 对于 PyTorch: ```python import torch if torch.cuda.is_available(): device = torch.device("cuda") # a CUDA device object print(f"CUDA Device Count: {torch.cuda.device_count()}") print(f"Current CUDA Device: {torch.cuda.current_device()}") print(f"CUDA Device Name: {torch.cuda.get_device_name(device)}") else: print("No GPU detected or not properly set up.") ``` 如果以上代码能够正常检测到 GPU 设备,则说明配置已完成[^5]。 #### 5. 远程服务器上的 GPU 配置 (可选) 当本地机器无法满足需求时,可以通过 SSH 连接到远程服务器来进行开发工作。具体操作如下: - 利用 MobaXterm 或其他类似的客户端登录目标服务器; - 在服务器端重复前面提到的所有步骤以建立完整的 GPU 开发环境; - 将 PyCharm 配置为通过远程解释器访问该服务器上的资源。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值