论文阅读:WeatherBench: A Benchmark Data Set for Data-Driven Weather Forecasting

在这里插入图片描述

一、简介

数据驱动的方法能否用于预测全球的天气模式,最初的研究由于缺乏共同的数据集和评估指标,使得研究之间的相互比较变得困难。本文给出了一个数据驱动的中期天气预报基准数据集(具体为3 - 5天)。本文提供了源自ERA5的经过处理的数据,简单而明确的评价指标,这将使不同方法之间能够直接比较。此外还提供了简单线性回归技术、深度学习模型以及纯物理预测模型的基线分数。该数据集在https://github.com/pangeo-data/WeatherBench,配套代码具有可重复性,并附有入门教程。
目前,天气(和气候)预测都是基于纯物理的计算模型,在离散的数值网格上求解大气和海洋的控制方程或最佳近似。总的来说,这种方法是非常成功的。然而,目前的数值天气预报( NWP )模式在许多重要的应用中仍然存在不足,需要大量的计算力,特别是用于建立概率预报,通常仅限于50个或更少的集合成员。
ML可以通过多种不同的方式应用于天气预报。

  • 后处理- -物理模型输出中统计偏差的修正
  • 统计预报–物理模型不直接输出的变量的预测。
  • 混合建模–物理模型与数据驱动组件相结合。核心思想是仅将不确定的或计算昂贵的模型组件替换为机器学习仿真器,而其他模型组件则保持不变。这样的混合模型的弊端是:首先,物理和机器学习组件之间的相互作用知之甚少,并可能导致意想不到的不稳定和偏差。其次,从技术角度来看,它们很难实现。

本文专注于纯数据驱动的中等范围内全球大气流动的预测。具体来说,选取了3天和5天的提前量,此时大气仍然是合理确定的,但也表现出复杂的非线性行为,如斜压不稳定和热带气旋生成。创建一个好的中期预报需要了解复杂的大气动力学以及在一系列尺度上几个变量之间的相互作用。

二、方法

看论文好烦不想看论文明天再看吧

三、

"大规模基准数据集用于评估泛锐化性能"是一个用于评估图像泛锐化算法表现的数据集。泛锐化是一种图像处理技术,旨在通过将低分辨率的多光谱图像与高分辨率的全色图像融合,以产生具有较高空间分辨率和丰富光谱信息的图像。这种技术在许多遥感应用中都很有用,例如土地利用监测、资源管理和环境监测。 该数据集的规模大,包含了大量的多光谱和全色图像对,这些图像对均具有全面的注释和质量测量指标。这些图像对来自各种不同的遥感源,涵盖不同的场景和条件。数据集的构建过程经过精心设计,以保证评估结果的准确性和可靠性。 使用该数据集,研究人员和开发者可以对他们的泛锐化算法进行全面的评估和对比。他们可以将自己的算法应用于数据集中的图像对,并使用数据集中提供的注释进行性能评估。这些注释可以包括图像质量评价指标,如结构相似性指数(SSIM)和峰值信噪比(PSNR),或者一些更复杂的图像质量评价方法,如目标检测和目标分类任务的准确率。通过与其他算法进行比较,开发者可以了解他们的算法在不同场景和条件下的表现如何,并进一步改进和优化他们的方法。 "大规模基准数据集用于评估泛锐化性能"的建立为泛锐化算法的发展提供了一个公共的平台,促进了该领域的研究和进步。研究人员和开发者可以根据数据集中的结果和经验得出更好的算法和技术,进一步提高泛锐化算法在实际应用中的效果。这个数据集的存在为遥感图像处理的研究和应用带来了很大的推动力。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值