一、简介
数据驱动的方法能否用于预测全球的天气模式,最初的研究由于缺乏共同的数据集和评估指标,使得研究之间的相互比较变得困难。本文给出了一个数据驱动的中期天气预报基准数据集(具体为3 - 5天)。本文提供了源自ERA5的经过处理的数据,简单而明确的评价指标,这将使不同方法之间能够直接比较。此外还提供了简单线性回归技术、深度学习模型以及纯物理预测模型的基线分数。该数据集在https://github.com/pangeo-data/WeatherBench,配套代码具有可重复性,并附有入门教程。
目前,天气(和气候)预测都是基于纯物理的计算模型,在离散的数值网格上求解大气和海洋的控制方程或最佳近似。总的来说,这种方法是非常成功的。然而,目前的数值天气预报( NWP )模式在许多重要的应用中仍然存在不足,需要大量的计算力,特别是用于建立概率预报,通常仅限于50个或更少的集合成员。
ML可以通过多种不同的方式应用于天气预报。
- 后处理- -物理模型输出中统计偏差的修正
- 统计预报–物理模型不直接输出的变量的预测。
- 混合建模–物理模型与数据驱动组件相结合。核心思想是仅将不确定的或计算昂贵的模型组件替换为机器学习仿真器,而其他模型组件则保持不变。这样的混合模型的弊端是:首先,物理和机器学习组件之间的相互作用知之甚少,并可能导致意想不到的不稳定和偏差。其次,从技术角度来看,它们很难实现。
本文专注于纯数据驱动的中等范围内全球大气流动的预测。具体来说,选取了3天和5天的提前量,此时大气仍然是合理确定的,但也表现出复杂的非线性行为,如斜压不稳定和热带气旋生成。创建一个好的中期预报需要了解复杂的大气动力学以及在一系列尺度上几个变量之间的相互作用。
二、方法
看论文好烦不想看论文明天再看吧